Skip to main content

Advertisement

Log in

Ag modified Fe-doping TiO2 nanoparticles and nanowires with enhanced photocatalytic activities for hydrogen production and volatile organic pollutant degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ag modified Fe-doping TiO2 nanoparticles and nanowires (Ag@Fe–TiO2 NPs and NWs) were prepared by convenient modified sol–gel and one-pot solvothermal method, respectively. The high photocatalytic activities of the Ag@Fe–TiO2 photocatalysts for H2 production and formaldehyde degradation were ascribed to the extended light-responsive range, accelerated migration, increased specific surface area and suppressed recombination of photogenerated carriers. All Ag@Fe–TiO2 samples showed good photochemical stabilities for reusage. The mechanisms for the significantly enhanced photocatalytic activities of the Ag@Fe–TiO2 NPs and NWs were proposed. Our research provides valuable contributions in the future preparations and applications for TiO2 based photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Sun, E. Liu, J. Fan, X. Hu, F. Wu, W. Hou, Y. Yang, L. Kang, High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method. Chem. Eng. J. 228, 896–906 (2013)

    CAS  Google Scholar 

  2. T. Sun, E. Liu, X. Liang, X. Hu, J. Fan, Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Appl. Surf. Sci. 347, 696–705 (2015)

    CAS  Google Scholar 

  3. Y. Zhao, C. Tao, G. Xiao, G. Wei, L. Li, C. Liu, H. Su, Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposite. Nanoscale 8, 5313–5326 (2016)

    CAS  Google Scholar 

  4. B.P. Zhu, C.L. Fei, C. Wang, Y.H. Zhu, X.F. Yang, H.R. Zheng, Q.F. Zhou, K.K. Shung, Self-focused AlScN film ultrasound transducer for individual cell manipulation. ACS Sens 2, 172–177 (2017)

    CAS  Google Scholar 

  5. B.P. Zhu, Y.H. Zhu, J. Yang, J. Ou-Yang, X.F. Yang, Y.X. Li, W. Wei, New potassium sodium niobate single crystal with thickness independent high-performance for photoacoustic angiography of atherosclerotic lesion. Sci. Rep. 6, 39679 (2016)

    CAS  Google Scholar 

  6. J.P. Li, X.X. Yan, B.P. Zhu, J. Xu, J. Ou-Yang, X.F. Yang, Synthesis of cylindrically-concaved PMN-PT thick films by pad printing process. J. Alloys Compd. 695, 859–862 (2017)

    CAS  Google Scholar 

  7. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  Google Scholar 

  8. M. Tahir, B. Tahir, N.A.S. Amin, Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B 204, 548–560 (2017)

    CAS  Google Scholar 

  9. D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang, H. Song, Effect of thickness and microstructure of TiO2 shell on photocatalytic performance of magnetic separable Fe3O4/SiO2/mTiO2 coreshell composites. Phys. Status Solidi A 214, 1600665 (2011)

    Google Scholar 

  10. S. Krumdieck, R. Gorthy, A. J.Gardecka, D. Lee, S.S. Miya, S.D. Talwar, M.I.J. Polson, C. Bishop, Characterization of photocatalytic, wetting and optical properties of TiO2 thin films and demonstration of uniform coating on a 3-D surface in the mass transport controlled regime. Surf. Coat. Technol. 326, 402–410 (2017)

    CAS  Google Scholar 

  11. S. Bai, W. Yin, L. Wang, Z. Li, Y. Xiong, Surface and interface design of cocatalysts toward photocatalytic water splitting and co2 reduction. RSC Adv. 6, 57446–57463 (2016)

    CAS  Google Scholar 

  12. N.S. Leyland, J. Podporska-Carroll, J. Browne, S.J. Hinder, B. Quilty, S.C. Pillai, Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep. 6, 24770 (2016)

    CAS  Google Scholar 

  13. J.C. Elliot, Structure and Chemistry of Apatite and Other Calcium Orthophosphates (Elsevier Science Publishers, Amsterdam, 1994)

    Google Scholar 

  14. Y.C. Pu, G. Wang, K.D. Chang, Y. Ling et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817–3832 (2013)

    CAS  Google Scholar 

  15. W. Wang, J. Zhang, F. Chen, D. He, M. Anpo, Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles. J. Colloid Interface Sci. 323, 182–186 (2008)

    CAS  Google Scholar 

  16. L.G. Devi, R. Kavitha, A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl. Surf. Sci. 360, 601–622 (2016)

    Google Scholar 

  17. S.K. Dutta, S.K. Mehetor, N. Pradhan, Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 3, 936–944 (2015)

    Google Scholar 

  18. L.G. Devi, R. Kavitha, B. Nagaraj, Bulk and surface modification of TiO2 with sulfur and silver: synergetic effects of dual surface modification in the enhancement of photocatalytic activity. Mater. Sci. Semicond. Process. 40, 832–839 (2015)

    Google Scholar 

  19. M.L. Brongersma, N.J. Halas, P. Nordlandu, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)

    CAS  Google Scholar 

  20. S. Kamimura, T. Miyazaki, M. Zhang, Y. Li, T. Tsubota, T. Ohno, (Au@Ag)@Au double shell nanoparticles loaded on rutile TiO2 for photocatalytic decomposition of 2-propanol under visible light irradiation. Appl. Catal. B 180, 255–262 (2016)

    CAS  Google Scholar 

  21. T. Tanvi, A. Mahajan, R.K. Bedi, S. Kumar, V. Saxena, A. Singh, D.K. Aswal, Broadband enhancement in absorption cross-section of N719 dye using different anisotropic shaped single crystalline silver nanoparticles. RSC Adv. 6, 48064–48071 (2016)

    CAS  Google Scholar 

  22. A. Jureka, Z. Wei, I. Wysocka, P. Szweda, E. Kowalska, The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Appl. Surf. Sci. 353, 317–325 (2015)

    Google Scholar 

  23. J. Hu, H. Li, Q. Wu, Y. Zhao, Q. Jiao, Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites, their photocatalytic performances. Chem. Eng. J. 263, 144–150 (2015)

    CAS  Google Scholar 

  24. S. Liu, G. Chen, P.N. Prasad, M.T. Swihart, Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem. Mater. 23, 4098–4101 (2011)

    CAS  Google Scholar 

  25. J. Nesic, D. Manojlovic, M. Jovic, B. Dojcinovic, P. Vulic, J. Krstic, G. Roglic, Fenton-like oxidation of azodye using mesoporous Fe/TiO2 prepared by microwave-assisted hydrothermal process. J. Serb. Chem. Soc. 79021, 977–991 (2014)

    Google Scholar 

  26. I. Paramasivam, J.M. Macak, P. Schmuki, Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 10, 71–75 (2008)

    CAS  Google Scholar 

  27. J. Park, D.H. Lim, H.J. Lim, T. Kwon, J.S. Choi, S. Jeong, I.H. Choi, J. Cheon, Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem. Commun. 47, 4382–4384 (2011)

    CAS  Google Scholar 

  28. Y. Qu, M. Yao, F. Li, X. Sun, Microstructures and photocatalytic properties of Fe3+/Ce3+ codoped nanocrystalline TiO2 films. Water Air Soil Pollut. 221, 13–21 (2011)

    CAS  Google Scholar 

  29. S.V. P.Vattikuti, C. Byon, Hydrothermally synthesized ternary heterostructured MoS2/Al2O3/g-C3N4 photocatalyst. Mater. Res. Bull. 96, 233–245 (2018)

    Google Scholar 

  30. Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Appl. Surf. Sci. 257, 8121–8126 (2011)

    CAS  Google Scholar 

  31. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semi-conductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015)

    CAS  Google Scholar 

  32. Y.P. Li, B.W. Wang, S.H. Liu, X.F. Duan, Z.Y. Hu, Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers. Appl. Surf. Sci. 324, 736–744 (2015)

    CAS  Google Scholar 

  33. P.C. Nagajyothi, M. Pandurangan, S.V.P. Vattikuti, C.O. Tettey, T.V.M. Sreekanth, J. Shim, Enhanced photocatalytic activity of Ag/g-C3N4 composite. Sep. Purif. Technol. 188, 228–237 (2017)

    CAS  Google Scholar 

  34. T. Harifi, M. Montazer, Fe3+: Ag/TiO2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation. Appl. Catal. A 473, 104–115 (2014)

    CAS  Google Scholar 

  35. A.N. Ökte, Ş Akalın, Iron(Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity. React. Kinet. Mech. Catal. 100, 55–70 (2010)

    Google Scholar 

  36. X. Fan, J. Fan, X. Hu, E. Liu, L. Kang, C. Tang, Y. Ma, H. Wu, Y. Li, Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram. Int. 40, 15907–15917 (2014)

    CAS  Google Scholar 

  37. E. Bozoglan, A. Midilli, A. Hepbasli, Sustainable assessment of solar hydrogenproduction techniques. Energy 46, 85–93 (2012)

    CAS  Google Scholar 

  38. X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 57, 70–100 (2014)

    Google Scholar 

  39. K. Christopher, R. Dimitros, A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 5, 6640–6651 (2012)

    CAS  Google Scholar 

  40. L.H. Huang, F.B. Zhang, N. Wang, R.R. Chen, A.T. Hsu, Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen productionin auto-thermal reforming of ethanol. Int. J. Hydrogen Energy 34, 1272–1279 (2012)

    Google Scholar 

  41. I.E. Dubois, S. Holgersson, S. Allard, M.E. Malmström, Dependency of BET surface area on particle size for some granitic minerals. Proc. Radiochim. Acta 1, 75–82 (2011)

    Google Scholar 

  42. P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Rutile phase n- and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 51, 7816–7819 (2015)

    CAS  Google Scholar 

  43. J. Zhang, X. Jin, P.I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J.P. Claverie, Engineering the absorption and field enhancement properties of Au–TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10, 4496–4503 (2016)

    CAS  Google Scholar 

  44. D. Soubane, N.J. Quitoriano, Photoluminescence from low thermal budget silicon nano-crystals in silica. Nanotechnology 26, 295201 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Solar energy efficient application of Hubei province Collaborative Innovation Center open funding (Nos. HBSKFMS 2014017, 337188 and HBSKFQN20167004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, G. & Lv, H. Ag modified Fe-doping TiO2 nanoparticles and nanowires with enhanced photocatalytic activities for hydrogen production and volatile organic pollutant degradation. J Mater Sci: Mater Electron 29, 10504–10516 (2018). https://doi.org/10.1007/s10854-018-9115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9115-z

Navigation