Ag modified Fe-doping TiO2 nanoparticles and nanowires with enhanced photocatalytic activities for hydrogen production and volatile organic pollutant degradation

  • Yang Liu
  • Guowang Xu
  • Hui Lv


The Ag modified Fe-doping TiO2 nanoparticles and nanowires (Ag@Fe–TiO2 NPs and NWs) were prepared by convenient modified sol–gel and one-pot solvothermal method, respectively. The high photocatalytic activities of the Ag@Fe–TiO2 photocatalysts for H2 production and formaldehyde degradation were ascribed to the extended light-responsive range, accelerated migration, increased specific surface area and suppressed recombination of photogenerated carriers. All Ag@Fe–TiO2 samples showed good photochemical stabilities for reusage. The mechanisms for the significantly enhanced photocatalytic activities of the Ag@Fe–TiO2 NPs and NWs were proposed. Our research provides valuable contributions in the future preparations and applications for TiO2 based photocatalysts.



This work was financially supported by Solar energy efficient application of Hubei province Collaborative Innovation Center open funding (Nos. HBSKFMS 2014017, 337188 and HBSKFQN20167004).


  1. 1.
    T. Sun, E. Liu, J. Fan, X. Hu, F. Wu, W. Hou, Y. Yang, L. Kang, High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method. Chem. Eng. J. 228, 896–906 (2013)CrossRefGoogle Scholar
  2. 2.
    T. Sun, E. Liu, X. Liang, X. Hu, J. Fan, Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Appl. Surf. Sci. 347, 696–705 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Zhao, C. Tao, G. Xiao, G. Wei, L. Li, C. Liu, H. Su, Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposite. Nanoscale 8, 5313–5326 (2016)CrossRefGoogle Scholar
  4. 4.
    B.P. Zhu, C.L. Fei, C. Wang, Y.H. Zhu, X.F. Yang, H.R. Zheng, Q.F. Zhou, K.K. Shung, Self-focused AlScN film ultrasound transducer for individual cell manipulation. ACS Sens 2, 172–177 (2017)CrossRefGoogle Scholar
  5. 5.
    B.P. Zhu, Y.H. Zhu, J. Yang, J. Ou-Yang, X.F. Yang, Y.X. Li, W. Wei, New potassium sodium niobate single crystal with thickness independent high-performance for photoacoustic angiography of atherosclerotic lesion. Sci. Rep. 6, 39679 (2016)CrossRefGoogle Scholar
  6. 6.
    J.P. Li, X.X. Yan, B.P. Zhu, J. Xu, J. Ou-Yang, X.F. Yang, Synthesis of cylindrically-concaved PMN-PT thick films by pad printing process. J. Alloys Compd. 695, 859–862 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  8. 8.
    M. Tahir, B. Tahir, N.A.S. Amin, Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B 204, 548–560 (2017)CrossRefGoogle Scholar
  9. 9.
    D. Wang, J. Yang, X. Li, J. Wang, H. Zhai, J. Lang, H. Song, Effect of thickness and microstructure of TiO2 shell on photocatalytic performance of magnetic separable Fe3O4/SiO2/mTiO2 coreshell composites. Phys. Status Solidi A 214, 1600665 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Krumdieck, R. Gorthy, A. J.Gardecka, D. Lee, S.S. Miya, S.D. Talwar, M.I.J. Polson, C. Bishop, Characterization of photocatalytic, wetting and optical properties of TiO2 thin films and demonstration of uniform coating on a 3-D surface in the mass transport controlled regime. Surf. Coat. Technol. 326, 402–410 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Bai, W. Yin, L. Wang, Z. Li, Y. Xiong, Surface and interface design of cocatalysts toward photocatalytic water splitting and co2 reduction. RSC Adv. 6, 57446–57463 (2016)CrossRefGoogle Scholar
  12. 12.
    N.S. Leyland, J. Podporska-Carroll, J. Browne, S.J. Hinder, B. Quilty, S.C. Pillai, Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep. 6, 24770 (2016)CrossRefGoogle Scholar
  13. 13.
    J.C. Elliot, Structure and Chemistry of Apatite and Other Calcium Orthophosphates (Elsevier Science Publishers, Amsterdam, 1994)Google Scholar
  14. 14.
    Y.C. Pu, G. Wang, K.D. Chang, Y. Ling et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817–3832 (2013)CrossRefGoogle Scholar
  15. 15.
    W. Wang, J. Zhang, F. Chen, D. He, M. Anpo, Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles. J. Colloid Interface Sci. 323, 182–186 (2008)CrossRefGoogle Scholar
  16. 16.
    L.G. Devi, R. Kavitha, A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl. Surf. Sci. 360, 601–622 (2016)CrossRefGoogle Scholar
  17. 17.
    S.K. Dutta, S.K. Mehetor, N. Pradhan, Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 3, 936–944 (2015)CrossRefGoogle Scholar
  18. 18.
    L.G. Devi, R. Kavitha, B. Nagaraj, Bulk and surface modification of TiO2 with sulfur and silver: synergetic effects of dual surface modification in the enhancement of photocatalytic activity. Mater. Sci. Semicond. Process. 40, 832–839 (2015)CrossRefGoogle Scholar
  19. 19.
    M.L. Brongersma, N.J. Halas, P. Nordlandu, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Kamimura, T. Miyazaki, M. Zhang, Y. Li, T. Tsubota, T. Ohno, (Au@Ag)@Au double shell nanoparticles loaded on rutile TiO2 for photocatalytic decomposition of 2-propanol under visible light irradiation. Appl. Catal. B 180, 255–262 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Tanvi, A. Mahajan, R.K. Bedi, S. Kumar, V. Saxena, A. Singh, D.K. Aswal, Broadband enhancement in absorption cross-section of N719 dye using different anisotropic shaped single crystalline silver nanoparticles. RSC Adv. 6, 48064–48071 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Jureka, Z. Wei, I. Wysocka, P. Szweda, E. Kowalska, The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Appl. Surf. Sci. 353, 317–325 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Hu, H. Li, Q. Wu, Y. Zhao, Q. Jiao, Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites, their photocatalytic performances. Chem. Eng. J. 263, 144–150 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Liu, G. Chen, P.N. Prasad, M.T. Swihart, Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem. Mater. 23, 4098–4101 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Nesic, D. Manojlovic, M. Jovic, B. Dojcinovic, P. Vulic, J. Krstic, G. Roglic, Fenton-like oxidation of azodye using mesoporous Fe/TiO2 prepared by microwave-assisted hydrothermal process. J. Serb. Chem. Soc. 79021, 977–991 (2014)CrossRefGoogle Scholar
  26. 26.
    I. Paramasivam, J.M. Macak, P. Schmuki, Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 10, 71–75 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Park, D.H. Lim, H.J. Lim, T. Kwon, J.S. Choi, S. Jeong, I.H. Choi, J. Cheon, Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem. Commun. 47, 4382–4384 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Qu, M. Yao, F. Li, X. Sun, Microstructures and photocatalytic properties of Fe3+/Ce3+ codoped nanocrystalline TiO2 films. Water Air Soil Pollut. 221, 13–21 (2011)CrossRefGoogle Scholar
  29. 29.
    S.V. P.Vattikuti, C. Byon, Hydrothermally synthesized ternary heterostructured MoS2/Al2O3/g-C3N4 photocatalyst. Mater. Res. Bull. 96, 233–245 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Appl. Surf. Sci. 257, 8121–8126 (2011)CrossRefGoogle Scholar
  31. 31.
    X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semi-conductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015)CrossRefGoogle Scholar
  32. 32.
    Y.P. Li, B.W. Wang, S.H. Liu, X.F. Duan, Z.Y. Hu, Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers. Appl. Surf. Sci. 324, 736–744 (2015)CrossRefGoogle Scholar
  33. 33.
    P.C. Nagajyothi, M. Pandurangan, S.V.P. Vattikuti, C.O. Tettey, T.V.M. Sreekanth, J. Shim, Enhanced photocatalytic activity of Ag/g-C3N4 composite. Sep. Purif. Technol. 188, 228–237 (2017)CrossRefGoogle Scholar
  34. 34.
    T. Harifi, M. Montazer, Fe3+: Ag/TiO2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation. Appl. Catal. A 473, 104–115 (2014)CrossRefGoogle Scholar
  35. 35.
    A.N. Ökte, Ş Akalın, Iron(Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity. React. Kinet. Mech. Catal. 100, 55–70 (2010)Google Scholar
  36. 36.
    X. Fan, J. Fan, X. Hu, E. Liu, L. Kang, C. Tang, Y. Ma, H. Wu, Y. Li, Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram. Int. 40, 15907–15917 (2014)CrossRefGoogle Scholar
  37. 37.
    E. Bozoglan, A. Midilli, A. Hepbasli, Sustainable assessment of solar hydrogenproduction techniques. Energy 46, 85–93 (2012)CrossRefGoogle Scholar
  38. 38.
    X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 57, 70–100 (2014)CrossRefGoogle Scholar
  39. 39.
    K. Christopher, R. Dimitros, A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 5, 6640–6651 (2012)CrossRefGoogle Scholar
  40. 40.
    L.H. Huang, F.B. Zhang, N. Wang, R.R. Chen, A.T. Hsu, Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen productionin auto-thermal reforming of ethanol. Int. J. Hydrogen Energy 34, 1272–1279 (2012)CrossRefGoogle Scholar
  41. 41.
    I.E. Dubois, S. Holgersson, S. Allard, M.E. Malmström, Dependency of BET surface area on particle size for some granitic minerals. Proc. Radiochim. Acta 1, 75–82 (2011)Google Scholar
  42. 42.
    P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Rutile phase n- and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 51, 7816–7819 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Zhang, X. Jin, P.I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J.P. Claverie, Engineering the absorption and field enhancement properties of Au–TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10, 4496–4503 (2016)CrossRefGoogle Scholar
  44. 44.
    D. Soubane, N.J. Quitoriano, Photoluminescence from low thermal budget silicon nano-crystals in silica. Nanotechnology 26, 295201 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceHubei University of TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar EnergyWuhanPeople’s Republic of China

Personalised recommendations