Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15502–15511 | Cite as

White and yellow light emission from ZrO2:Dy3+ nanocrystals synthesized by a facile chemical technique

  • A. Báez-Rodríguez
  • D. Albarrán-Arreguín
  • A. C. García-Velasco
  • O. Álvarez-Fregoso
  • M. García-Hipólito
  • M. A. Álvarez-Pérez
  • L. Zamora-Peredo
  • C. Falcony
Article
  • 53 Downloads

Abstract

White and yellow light were obtained from ZrO2:Dy3+ nanocrystals which were synthesized by the solvent evaporation technique. The crystalline structure was studied by X-ray diffraction, resulting in a tetragonal and monoclinic mixture phases of ZrO2 when the powders were annealed at 600 °C and the zirconia monoclinic phase when they were thermal treated at 1000 °C. By means of atomic force microscopy images was observed that the synthesized powders are constituted by nanocrystals about 20 nm for the samples annealed at 600 °C, whereas samples annealed at 1000 °C were constituted by crystals about 135 nm, these features were confirmed by TEM images. Luminescence properties were analyzed by means of photo and cathodoluminescence; exhibiting emissions in the white light region of the chromatic diagram. In the case of photoluminescence white-warm color (x = 0.35, y = 0.37) was observed, which is close to pure white color; while for cathodoluminescence the emission was yellowish with coordinates (x = 0.39, y = 0.39) in the chromatic diagram. PL decay time measurements were carried out; a lifetime of 0.66 ms was found. In addition, the PL quantum efficiency was measured; the obtained value was as high as 45%.

Notes

Acknowledgements

The authors thank to Adriana Tejeda for the XRD measurements and to Daniel de Jesús Araujo Perez for their for the XRD analysis, to Omar Novelo for the SEM micrographs, to Josué Romero for TEM images, Carlos Flores for the AFM images and to Marcela Guerrero, Zacarías Rivera, Raúl Reyes and Alberto López for their technical support.

References

  1. 1.
    S. Lange, V. Kiisk, V. Reedo, M. Kirm, J. Aarik, I. Sildos, Opt. Mater. 28, 1238–1242 (2006)CrossRefGoogle Scholar
  2. 2.
    Z. Xie, Z. Yin, Y. Wu, C. Liu, X. Hao, Q. Du, X. Xu, Nat. Sci. Rep. 7, 12146 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Cho, J.H. Park, J.K. Kim, E.F. Schubert, Laser Photonics Rev. 11(2), 1600147 (2017)CrossRefGoogle Scholar
  4. 4.
    M.M. Kimani, J.W. Kolis, J. Lumin. 145, 492–497 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Chemingui, M. Ferhi, K. Horchani-Naifer, M. Férid, J. Lumin. 166, 82–87 (2015)CrossRefGoogle Scholar
  6. 6.
    Y.C. Ratnakaram, D.T. Naidu, A. Vijayakumar, J.L. Rao, Opt. Mater. 27, 409–417 (2004)CrossRefGoogle Scholar
  7. 7.
    S. Tanabe, J. Kang, T. Hanada, N. Soga, J. Non-Cryst. Solids 239, 170–175 (1998)CrossRefGoogle Scholar
  8. 8.
    P. Babu, C.K. Jayasankar, Opt. Mater. 15, 65–79 (2000)CrossRefGoogle Scholar
  9. 9.
    H.W. Zhang, X.Y. Fu, S.Y. Niu, C.G. Sun, Q. Xim, Solid State Commun. 132, 527 (2004)CrossRefGoogle Scholar
  10. 10.
    D. Van der Voort, G. Blasse, Chem. Mater. 3, 1041–1045 (1991)CrossRefGoogle Scholar
  11. 11.
    K. Hanaoka, K. Kikichi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc. 126, 12470–12476 (2004)CrossRefGoogle Scholar
  12. 12.
    Z. Hong, W.L. Li, D. Zhao, C. Liang, X. Liu, J. Peng, Synth. Met. 111, 43 (2000)CrossRefGoogle Scholar
  13. 13.
    I.T. Weber, A.P. Maciel, P.N. Lisboa-Filho, E. Longo, E.R. Leite, Nano Lett. 2, 969–973 (2002)CrossRefGoogle Scholar
  14. 14.
    H. Choi, C.H. Kim, C.H. Pyun, S.J. Kim, J. Lumin. 82, 25–32 (1999)CrossRefGoogle Scholar
  15. 15.
    C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, M. Muñoz, J. Sol-Gel. Sci. Technol. 8, 999–1005 (1997)Google Scholar
  16. 16.
    A. Gendaken, R. Reisfeld, E. Sominsky, O. Palchik, Yu Kiltypin, G. Pancer, M. Gaft, H. Minti, J. Phys. Chem. B 204, 7075 (2000)Google Scholar
  17. 17.
    H.W. Zhang, X.Y. Fu, S.Y. Niu, Q. Xin, Mater. Chem. Phys. 91, 361–364 (2005)CrossRefGoogle Scholar
  18. 18.
    J.C. Pivin, N.V. Gaponenco, I. Molchan, R. Kudrawiec, J. Misiewics, J. Alloys Compd. 341, 272–274 (2002)CrossRefGoogle Scholar
  19. 19.
    M. Garcia-Hipolito, O. Alvarez-Fregoso, E. Martínez, C. Falcony, M.A. Aguilar-Frutis, Opt. Mater. 20, 113–118 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Baéz-Rodríguez, O. Alvarez-Fragoso, M. García-Hipólito, J. Guzmán-Mendoza, C. Falcony, Ceram. Int. 41, 7197–7206 (2015)CrossRefGoogle Scholar
  21. 21.
    R.C. Martínez-Olmos, J. Guzmán-Mendoza, A. Báez-Rodríguez, O. Álvarez-Fragoso, M. García-Hipólito, C. Falcony, Opt. Mater. 46, 168–174 (2015)CrossRefGoogle Scholar
  22. 22.
    R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416–419 (1994)CrossRefGoogle Scholar
  23. 23.
    P. Haritha, C.S.D. Viswanath, K. Linganna, P. Babu, C.K. Jayasankar, V. Lavín, V. Venkatramu, J. Lumin. 179, 533–538 (2016)CrossRefGoogle Scholar
  24. 24.
    Y. Gao, Y. Masuda, H. Ohta, K. Koumoto, Chem. Mater. 16, 2615–2622 (2004)CrossRefGoogle Scholar
  25. 25.
    M.A. Waghmare, K.S. Pawar, H.M. Pathan, A.U. Ubale, Mater. Sci. Semicond. Process. 72, 122–127 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Jalali, M. Mozammel, J. Mater. Sci.: Mater. Electron. 28, 5336–5343 (2017)Google Scholar
  27. 27.
    J. Jalali, M. Mozammel, M. OjaghiIlkhchi, J. Mater. Sci.: Mater. Electron. 28, 16776–16787 (2017)Google Scholar
  28. 28.
    P. Haritha, I.R. Martín, C.S.D. Viswanath, N. Vijaya, K.V. Krishnaiah, Opt. Mater. 70, 16–24 (2017)CrossRefGoogle Scholar
  29. 29.
    X. Fua, S. Niu, H. Zhang, Q. Xin, Mater. Sci. Eng. B 129, 14–17 (2006)CrossRefGoogle Scholar
  30. 30.
    Q. Du, G. Zhou, J. Zhou, X. Jia, H. Zhou, J. Alloys Compd. 552, 152–156 (2013)CrossRefGoogle Scholar
  31. 31.
    C.-H. Liang, L.-G. Teohb, K.T. Liu, Y.-S. Chang, J. Alloys Compd. 517, 9–13 (2012)CrossRefGoogle Scholar
  32. 32.
    Y. Shi, Y. Wang, Z. Yang, J. Alloys Compd. 509, 3128–3131 (2011)CrossRefGoogle Scholar
  33. 33.
    O. Lyuji, Cathodoluminescence Theory and Applications (Kodansha Ltd., Tokio, 1990), pp. 3–36Google Scholar
  34. 34.
    G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, H. You, Opt. Mater. 31, 1032–1037 (2009)CrossRefGoogle Scholar
  35. 35.
    G. Phaomei, W. Singh, R.S. Ningthoujam, J. Lumin. 131, 1164–1171 (2011)CrossRefGoogle Scholar
  36. 36.
    I.A. Rayappan, K. Marimuthu, S.S. Babu, M. Sivaraman, J. Lumin. 130, 2407–2412 (2010)CrossRefGoogle Scholar
  37. 37.
    T. Li, P.L. Li, Z.J. Wang, S.C. Xu, Q.Y. Bai, Z.P. Yang, Dalton Trans. 44, 16840–16846 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Deng, N. Xue, Z. Hei, M. He, T. Wang, N. Xie, R. Yu, Opt. Mater. Express 5, 490–496 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Báez-Rodríguez
    • 1
  • D. Albarrán-Arreguín
    • 2
  • A. C. García-Velasco
    • 1
  • O. Álvarez-Fregoso
    • 2
  • M. García-Hipólito
    • 2
  • M. A. Álvarez-Pérez
    • 3
  • L. Zamora-Peredo
    • 1
  • C. Falcony
    • 4
  1. 1.Centro de investigación en Micro y NanotecnologíaUniversidad VeracruzanaBoca del RíoMexico
  2. 2.Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Laboratorio de Bioingeniería de Tejidos, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations