Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15486–15495 | Cite as

Chromogenic MoO3 thin films: thermo-, photo-, and electrochromic response to working pressure variation in rf reactive magnetron sputtering

  • V. Cruz-San Martín
  • M. Morales-Luna
  • P. E. García-Tinoco
  • M. Pérez-González
  • M. A. Arvizu
  • H. Crotte-Ledesma
  • M. Ponce-Mosso
  • S. A. Tomás


The thermochromic, photochromic, and electrochromic properties of molybdenum trioxide (MoO3) thin films were studied. MoO3 thin films were deposited by rf reactive magnetron sputtering and the influence of deposition parameters, i.e. O2/Ar gas ratio and working pressure, on the chromogenic properties was investigated. Thermochromism was induced by annealing the samples in either air or argon in the range 23–300 °C for 2 h. We found that the highest response was obtained for samples grown at 5.3 × 10−1 Pa, although films annealed in air showed a maximum coloration around 250 °C that became bleached above this temperature. As for the annealing in argon, the thermochromic effect increased even at 300 °C. By exposing samples to UV irradiation in air, photochromism could be induced for different intervals ranging from 0 to 3 h. The highest photochromic response was obtained for samples deposited at 1.3 Pa. Cyclic voltammetry for 20 cycles in a 1 M LiClO4 in propylene carbonate solution, inside a glovebox filled with argon, was used to evaluate the electrochromic response. Samples that showed optimum electrochromic response were deposited at 1.6 Pa. These results are explained in terms of the optical, structural, surface chemical composition, and vibrational modes.



This work was supported by CONACyT (Mexico) under projects No.168605 and 205733. One of us (M.P.-M.) is thankful to SNI-CONACyT for a SNI-III grant. We are grateful to G. Niklasson and C.-G. Granqvist (Uppsala University), and J. Santoyo-Salazar for enlightening discussions. M.M.-L. thanks the postdoctoral fellowship from CONACYT-SENER No. 2138. The technical assistance of E. Ayala, A. García-Sotelo, and M. Guerrero is acknowledged.


  1. 1.
    B. Feng, Z. Wu, J. Liu, K. Zhu, Z. Li, X. Jin, Y. Hou, Q. Xi, M. Cong, P. Liu, Q. Gu, Appl. Catal. B 206, 242 (2017)CrossRefGoogle Scholar
  2. 2.
    T. He, J. Yao, Prog. Mater Sci. 51, 810 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Bange, Sol. Energy Mater. Sol. Cells 58, 1–131 (1999)CrossRefGoogle Scholar
  4. 4.
    M.A. Arvizu, M. Morales-Luna, S.A. Tomás, P. Rodríguez, O. Zelaya-Angel, AIP Conf. Proc. 1420, 151 (2012)CrossRefGoogle Scholar
  5. 5.
    M.A. Arvizu, S.A. Tomás, M. Morales-Luna, J. Santoyo-Salazar, J.O. García-Torija, O. Zelaya-Angel, Int. J. Thermophys. 33, 2035 (2012)CrossRefGoogle Scholar
  6. 6.
    H.-Q. Wang, T. Stubhan, A. Osvet, I. Litzov, C.J. Brabec, Sol. Energy Mater. Sol. Cells 105, 196 (2012)CrossRefGoogle Scholar
  7. 7.
    C.G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)Google Scholar
  8. 8.
    S.A. Tomás, M.A. Arvizu, O. Zelaya-Angel, P. Rodríguez, Thin Solid Films 518, 1332 (2009)CrossRefGoogle Scholar
  9. 9.
    S.K. Deb, J.A. Chopoorian, J. Appl. Phys. 37, 4818 (1966)CrossRefGoogle Scholar
  10. 10.
    R.J. Colton, A.M. Guzman, J.W. Rabalais, Acc. Chem. Res. 11, 170 (1978)CrossRefGoogle Scholar
  11. 11.
    S.K. Deb, Proc. R. Soc. A 304, 211 (1968)CrossRefGoogle Scholar
  12. 12.
    B.W. Faughnan, R.S. Crandall, P.H. Heyman, RCA Rev. 36, 177 (1975)Google Scholar
  13. 13.
    O.F. Schrimer, V. Wittwer, G. Baur, G. Brandt, J. Electrochem. Soc. 124, 749 (1977)CrossRefGoogle Scholar
  14. 14.
    J.M. Pachlhofer, C. Jachs, R. Franz, E. Franzke, H. Kostenbauer, J. Winkler, C. Mitterer, Vacuum 131, 246 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Morales-Luna, S.A. Tomás, M.A. Arvizu, M. Pérez-González, E. Campos-Gonzalez, J. Alloys Compd. 722, 938 (2017)CrossRefGoogle Scholar
  16. 16.
    A.M. Hashem, S.M. Abbas, A.E. Abdel-Ghany, A.E. Eid, A.A. Abdel-Khalek, S. Indris, H. Ehrenberg, A. Mauger, C.M. Julien, J. Alloys Compd. 686, 744 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B. Khelifa, R. Desfeux, Mater. Sci. Eng. B 97, 5 (2003)CrossRefGoogle Scholar
  18. 18.
    T. Xia, Q. Li, X. Liu, J. Meng, X. Cao, J. Phys. Chem. B 110, 2006 (2006)CrossRefGoogle Scholar
  19. 19.
    C. Gretener, J. Perrenoud, L. Kranz, C. Baechler, S. Yoon, Y.E. Romanyuk, S. Buecheler, A.N. Tiwari, Thin Solid Films 535, 193 (2013)CrossRefGoogle Scholar
  20. 20.
    G.A. Nazri, C. Julien, Solid State Ion. 53–56, 376 (1992)CrossRefGoogle Scholar
  21. 21.
    E.M. McCarron III, J. Chem. Soc. Chem. Commun. 4, 336 (1986)CrossRefGoogle Scholar
  22. 22.
    J. Song, X. Ni, L. Gao, H. Zheng, Mater. Chem. Phys. 102, 245 (2007)CrossRefGoogle Scholar
  23. 23.
    B.W. Faughnan, R.S. Crandall, Appl. Phys. Lett. 31, 834 (1977)CrossRefGoogle Scholar
  24. 24.
    M.A. Arvizu, M. Morales-Luna, M. Pérez-González, E. Campos-Gonzalez, O. Zelaya-Angel, S.A. Tomás, Int. J. Thermophys. 38, 51 (2017)CrossRefGoogle Scholar
  25. 25.
    M.F. Al-Kuhaili, S.M.A. Durrani, I.A. Bakhtiari, A.M. Al-Shukri, Opt. Commun. 283, 2857 (2010)CrossRefGoogle Scholar
  26. 26.
    I.R. Beattie, T.R. Gilson, J. Chem. Soc. A (1969). Google Scholar
  27. 27.
    K. Ajito, L.A. Nagahara, D.A. Tryk, K. Hashimoto, A. Fujishima, J. Phys. Chem. 99, 16383 (1995)CrossRefGoogle Scholar
  28. 28.
    Q.P. Ding, H.B. Huang, J.H. Duan, J.F. Gong, S.G. Yang, X.N. Zhao, Y.W. Du, J. Cryst. Growth 294, 304 (2006)CrossRefGoogle Scholar
  29. 29.
    C. Julien, A. Khelfa, O.M. Hussain, G.A. Nazri, J. Cryst. Growth 156, 235 (1995)CrossRefGoogle Scholar
  30. 30.
    E. Haro-Poniatowski, M. Jouanne, J.F. Morhange, C. Julien, R. Diamant, M. Fernández-Guasti, G.A. Fuentes, J.C. Alonso, Appl. Surf. Sci. 127–129, 674 (1998)CrossRefGoogle Scholar
  31. 31.
    S.H. Lee, M.J. Seong, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Solid State Ionics 147, 129 (2002)CrossRefGoogle Scholar
  32. 32.
    I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Rouhani, Y.L. Foo, J. Hobley, J. Pan, G.S. Subramanian, X. Yu, A. Rusydi, S. Gorelik, Appl. Surf. Sci. 273, 150 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, N. Fairley, Appl. Surf. Sci. 326, 151 (2015)CrossRefGoogle Scholar
  35. 35.
    D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, J. Phys. Chem. C 114, 4636 (2010)CrossRefGoogle Scholar
  36. 36.
    S.S. Tarsame, G.B. Reddy,  Sol. Energy Mater. Sol. Cells 82, 375 (2004)CrossRefGoogle Scholar
  37. 37.
    H.H. Afify, S.A. Hassan, A. Abouelsayed, S.E. Demian, H.A. Zayed, Thin Solid Films 623, 40 (2017)CrossRefGoogle Scholar
  38. 38.
    N. Miyata, S. Akiyoshi, J. Appl. Phys. 58, 1651 (1985)CrossRefGoogle Scholar
  39. 39.
    J. Scarminio, A. Lourenco, A. Gorenstein, Thin Solid Films 302, 66 (1997)CrossRefGoogle Scholar
  40. 40.
    K. Inzani, M. Nematollahi, F. Vullum-Bruer, T. Grande, T.W. Reenaas, S.M. Selbach, Phys. Chem. Chem. Phys. 19, 9232 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. Cruz-San Martín
    • 1
  • M. Morales-Luna
    • 2
  • P. E. García-Tinoco
    • 3
  • M. Pérez-González
    • 3
  • M. A. Arvizu
    • 3
  • H. Crotte-Ledesma
    • 3
  • M. Ponce-Mosso
    • 4
  • S. A. Tomás
    • 3
  1. 1.Bristol Centre for Functional Nanomaterials, School of PhysicsUniversity of BristolBristolUK
  2. 2.Facultad de Química, MaterialesUniversidad Autónoma de QuerétaroQuerétaroMexico
  3. 3.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del I.P.N.Mexico CityMexico
  4. 4.Departamento de Ingeniería AeronáuticaESIME-Ticomán del I.P.N.Mexico CityMexico

Personalised recommendations