Skip to main content
Log in

Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) with different nanostructures has been synthesized through a simple chemical oxidation method without using any hard or soft templates. A correlation between structure, chemical construction, electrical conductivity, and electromagnetic shielding properties were extensively investigated. The obtained PANI nanostructures exhibit various morphologies by just simply changing the doping acids. The PANI doped with hydrochloric acid (denoted as PANI-HCl) and doped with camphorsulfonic acid (denoted as PANI-CSA) exhibite the “holothurian-like” morphology, while the PANI doped with phosphoric acid (denoted as PANI-H3PO4) presents the nanofiber structure. The “holothurian-like” structure showed larger diameters and length than the nanofibers. During the three samples, the PANI-CSA exhibits the highest electrical conductivity (1.28 ± 0.17 S cm−1) due to the large oxidation extent, crystallinity, and crystallite size. An excellent electromagnetic interference (EMI) shielding effectiveness (SE) as 20.7 dB of PANI-CSA was achieved with the thickness of only 0.35 mm. All these samples present an absorption-dominated shielding mechanism. Moreover, the SE values obtained from the experiments are higher than the theoretical calculations. All these above results indicated that the EMI shielding performance and dielectric permittivity were strongly affected by the microstructure and the chemical construction. We believe that this one-step procedure represents a promising protocol to control the nanostructures and properties of PANI for applications as advanced EMI shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.N. Esfahani, A.A. Katbab, A. Taeb, L. Simon, M.A. Pope, Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur. Polym. J. 95, 520–538 (2017)

    Google Scholar 

  2. Y. Zhang, X. Fang, B. Wen, W. Zou, Facile preparation of asymmetric Ni/PVC film with controlled structure: application as a high-performance EMI shielding material. J. Appl. Polym. Sci. 132, 42560 (2015)

    Google Scholar 

  3. Z. Durmus, A. Durmus, M.Y. Bektay, H. Kavas, I.S. Unver, B. Aktas, Quantifying structural and electromagnetic interference (EMI) shielding properties of thermoplastic polyurethane-carbon nanofiber/magnetite nanocomposites. J. Mater. Sci. 51, 8005–8017 (2016)

    CAS  Google Scholar 

  4. Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mat. Interfaces 9, 809–818 (2017)

    CAS  Google Scholar 

  5. B.G. Soares, N. Riany, A.A. Silva, G.M.O. Barra, S. Livi, Dual-role of phosphonium: based ionic liquid in epoxy/MWCNT systems: electric, rheological behavior and electromagnetic interference shielding effectiveness. Eur. Polym. J. 84, 77–88 (2016)

    CAS  Google Scholar 

  6. Y. Zhang, X.X. Fang, B.Y. Wen, Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding. Chin. J. Polym. Sci. 33, 899–907 (2015)

    CAS  Google Scholar 

  7. B. Altava, V. Compañ, A. Andrio, L. del Castillo, S. Mollá, M. Burguete, E. Garcia-Verdugo, S. Luis, Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer 72, 69–81 (2015)

    CAS  Google Scholar 

  8. B. Somboonsub, S. Srisuwan, M.A. Invernale, S. Thongyai, P. Praserthdam, D.A. Scola, G.A. Sotzing, Comparison of the thermally stable conducting polymers PEDOT, PANi, and PPy using sulfonated poly (imide) templates. Polymer 51, 4472–4476 (2010)

    CAS  Google Scholar 

  9. G. Ćirić-Marjanović, Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 177, 1–47 (2013)

    Google Scholar 

  10. S. Srisuwan, S. Thongyai, G.A. Sotzing, P. Praserthdam, Preparation and characterization of conductive polyimide-graft-polyaniline. Microelectron. Eng. 104, 22–28 (2013)

    CAS  Google Scholar 

  11. A.K. Sharma, P. Bhardwaj, K.K. Singh, S.K. Dhawan, Improved microwave shielding properties of polyaniline grown over three-dimensional hybrid carbon assemblage substrate. Appl. Nanosci. 5, 635–644 (2015)

    CAS  Google Scholar 

  12. A. Saboor, A.N. Khan, H.M. Cheema, K. Yaqoob, A. Shafqat, Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile. J. Mater. Sci.: Mater. Electron. 27, 9634–9641 (2016)

    CAS  Google Scholar 

  13. N.P. Tavandashti, M. Ghorbani, A. Shojaei, Controlled growth of hollow polyaniline structures: from nanotubes to microspheres. Comput. Theor. Polym. Sci. 54, 5586–5594 (2013)

    Google Scholar 

  14. E.M. Erro, A.M. Baruzzi, R.A. Iglesias, Fast electrochromic response of ultraporous polyaniline nanofibers. Polymer 55, 2440–2444 (2014)

    CAS  Google Scholar 

  15. X. Zhang, J. Zhu, N. Haldolaarachchige, J. Ryu, D.P. Young, S. Wei, Z. Guo, Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer 53, 2109–2120 (2012)

    CAS  Google Scholar 

  16. L.C. Jia, D.X. Yan, C.H. Cui, X. Jiang, X. Ji, Z.M. Li, Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J. Mater. Chem. C 3, 9369–9378 (2015)

    CAS  Google Scholar 

  17. T. David, J.K. Mathad, T. Padmavathi, A. Vanaja, Synthesis of polyaniline and carboxylic acid functionalized SWCNT composites for electromagnetic interference shielding coatings. Polymer 55, 5665–5672 (2014)

    CAS  Google Scholar 

  18. A.R.A. Schettini, D. Khastgir, B.G. Soares, Microwave dielectric properties and EMI shielding effectiveness of poly(styrene-b-styrene-butadiene-styrene) copolymer filled with PAni.Dodecylbenzenesulfonic acid and carbon black. Polym. Eng. Sci. 52, 2041–2048 (2012)

    CAS  Google Scholar 

  19. T. Anwer, M.O. Ansari, F. Mohammad, Dodecylbenzenesulfonic acid micelles assisted in situ preparation and enhanced thermoelectric performance of semiconducting polyaniline–zirconium oxide nanocomposites. J. Ind. Eng. Chem. 19, 1653–1658 (2013)

    CAS  Google Scholar 

  20. N.R. Chiou, L.J. Lee., A.J. Epstein, Self-assembled polyaniline nanofibers/nanotubes. Chem. Mater. 19, 3589–3591 (2007)

    CAS  Google Scholar 

  21. L.J. Zhang, M.X. Wan, Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology 13, 750–755 (2002)

    CAS  Google Scholar 

  22. G.H. Lim, H.J. Choi, Synthesis of self-assembled rectangular-shaped polyaniline nanotubes and their physical characteristics. J. Ind. Eng. Chem. 47, 51–55 (2017)

    CAS  Google Scholar 

  23. J. Stejskal, I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 35, 1420–1481 (2010)

    CAS  Google Scholar 

  24. D. Li, R.B. Kaner, Shape and aggregation control of nanoparticles: not shaken, not stirred. J. Am. Chem. Soc. 128, 968–975 (2006)

    CAS  Google Scholar 

  25. N. Joseph, J. Varghese, M. Sebastian, Self assembled polyaniline nanofibers with enhanced electromagnetic shielding properties. RSC Adv. 5, 20459–20466 (2015)

    CAS  Google Scholar 

  26. Z. Zhang, Z. Wei, L. Zhang, M. Wan, Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Mater. 53, 1373–1379 (2005)

    CAS  Google Scholar 

  27. F.X. Perrin, T.A. Phan, D.L. Nguyen, Preparation and characterization of polyaniline in reversed micelles of decylphosphonic acid for active corrosion protection coatings. Eur. Polym. J. 66, 253–265 (2015)

    CAS  Google Scholar 

  28. A. Drelinkiewicz, Z. Kalemba-Jaje, E. Lalik, R. Kosydar, Organo-sulfonic acids doped polyaniline: based solid acid catalysts for the formation of bio-esters in transesterification and esterification reactions. Fuel 116, 760–771 (2014)

    CAS  Google Scholar 

  29. J. Wang, K. Zhang, L. Zhao, Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): effect of protonic acids. Chem. Eng. J. 239, 123–131 (2014)

    Google Scholar 

  30. M. Bláha, M. Varga, J. Prokeš, A. Zhigunov, J. Vohlídal, Effects of the polymerization temperature on the structure, morphology and conductivity of polyaniline prepared with ammonium peroxodisulfate. Eur. Polym. J. 49, 3904–3911 (2013)

    Google Scholar 

  31. F. Rezaei, N.P. Tavandashti, A.R. Zahedi, Morphology of polyaniline nanofibers synthesized under different conditions. Res. Chem. Intermed. 40, 1233–1247 (2014)

    CAS  Google Scholar 

  32. A.M. Youssef, Morphological studies of polyaniline nanocomposite based mesostructured TiO2 nanowires as conductive packaging materials. RSC Adv. 4, 6811–6820 (2013)

    Google Scholar 

  33. S. Atifi, W.Y. Hamad, Emulsion-polymerized flexible semi-conducting CNCs–PANI–DBSA nanocomposite films. RSC Adv. 6, 65494–65503 (2016)

    CAS  Google Scholar 

  34. O. Abdulrazzaq, S.E. Bourdo, V. Saini, F. Watanabe, B. Barnes, A. Ghosh, A.S. Biris, Tuning the work function of polyaniline via camphorsulfonic acid: an X-ray photoelectron spectroscopy investigation. RSC Adv. 5, 33–40 (2014)

    Google Scholar 

  35. S. Tao, B. Hong, Z. Kerong, An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+. Spectrochim. Acta A 66, 1364–1368 (2007)

    Google Scholar 

  36. H.R. Tantawy, D.E. Aston, J.R. Smith, J.L. Young, Comparison of electromagnetic shielding with polyaniline nanopowders produced in solvent-limited conditions. ACS Appl. Mater. Interfaces 5, 4648–4658 (2013)

    CAS  Google Scholar 

  37. N. Joseph, J. Varghese, M.T. Sebastian, Self assembled polyaniline nanofibers with enhanced electromagnetic shielding properties. RSC Adv. 5, 20459–20466 (2015)

    CAS  Google Scholar 

  38. M. Das, D. Sarkar, Effect of oxidizing agent on ammonia sensing of DBSA doped polyaniline nanocomposite thin film. J. Mater. Sci.: Mater. Electron. 27, 4109–4119 (2016)

    CAS  Google Scholar 

  39. M. Magioli, B.G. Soares, A.S. Sirqueira, M. Rahaman, D. Khastgir, EMI shielding effectiveness and dielectrical properties of SBS/PAni.DBSA blends: effect of blend preparation. J. Appl. Polym. Sci. 125, 1476–1485 (2012)

    CAS  Google Scholar 

  40. A.R.A. Schettini, B.G. Soares, Study of microwave absorbing properties of polyaniline/STF conducting composites prepared by in situ polymerization. Macromol. Symp. (2011). https://doi.org/10.1002/masy.200900106

    Article  Google Scholar 

  41. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)

    CAS  Google Scholar 

  42. Y. Chen, Y. Li, M. Yip, N. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Compos. Sci. Technol. 80, 80–86 (2013)

    CAS  Google Scholar 

  43. H. Ghasemi, U. Sundararaj, Electrical properties of in situ polymerized polystyrene/polyaniline composites: the effect of feeding ratio. Synth. Met. 162, 1177–1183 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21274007), Young Core Personal Project & Beijing Outstanding Talent Training Project (2017000020124G079), the Science and Technology Development Project of Beijing Municipal Commission of Education (SQKM201610011001), Innovative Research Team of Polymeric Functional Film of Beijing Technology and Business University (19008001071), the Two Sections Cultivation Fund of Beijing Technology and Business University (LKJJ2016-23), and Beijing College Students’ Scientific Research Training Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Bianying Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, M., Zhang, Y. & Wen, B. Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance. J Mater Sci: Mater Electron 29, 10437–10444 (2018). https://doi.org/10.1007/s10854-018-9100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9100-6

Navigation