Skip to main content
Log in

A parametric study for the synthesis of graphene–AgAu nanocomposites: performances as electrode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO)/AgAu bimetallic nanoparticle nanocomposites were prepared with one step simultaneous reduction of graphene oxide, silver nitrate (AgNO3) and chloroauric acid (HAuCl4) using glucose as a reducing agent. The synthesized nanocomposites were characterized by ultraviolet–visible spectroscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscope with energy dispersive X-ray line scan analysis. The electrochemical performances of nanocomposites were analyzed by cyclic voltammetry and galvanostatic charge–discharge techniques. The effects of synthesis parameters on the structure and the morphology of graphene–AgAu bimetallic nanoparticle nanocomposites were investigated. The results showed that rGO sheets were successfully reduced and decorated homogenously by AgAu bimetallic nanoparticles with small sizes and narrow particle size distribution, also it was determined, synthesis parameters including reducing agent concentration, alkalinity of the reaction media, the presence of stabilizing agent polyvinylpyrrolidone and reaction temperature had significant effect on the particle size, size distribution and the particle structure of graphene nanosheets decorated with bimetallic nanoparticles. The results showed that rGO/AgAu bimetallic nanoparticle nanocomposite proved to be a promising electrode material for supercapacitors application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    CAS  Google Scholar 

  2. D. Wei, Y. Liu, Adv. Mater. 22, 3225 (2010)

    CAS  Google Scholar 

  3. A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee, J.-H. Hong, J.Min Ahn, H. Kim, B.J. Zirath, H. van Wees, L. van der Zant, A. Occhipinti, I.A. Di Matteo, T. Kinloch, E. Seyller, X. Quesnel, K. Feng, N. Teo, P. Rupesinghe, J. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret (2015) Nanoscale 7, 4598

    CAS  Google Scholar 

  4. D. Wang, Y. Li, Adv. Mater. 23, 1044 (2011)

    CAS  Google Scholar 

  5. S. Duan, R. Wang, Prog. Nat. Sci. Mater. Int. 23, 113 (2013)

    Google Scholar 

  6. S.G. Babu, M. Gopiraman, D. Deng, K. Wei, R. Karvembu, I.S. Kim, Chem. Eng. J. 300, 146 (2016)

    CAS  Google Scholar 

  7. L. Xu, M. Hong, Y. Wang, M. Li, H. Li, M.P.N. Nair, C.Z. Li, Sci. Bull. 61, 1525 (2016)

    CAS  Google Scholar 

  8. H.W. Tien, Y.L. Huang, S.Y. Yang, J.Y. Wang, C.C.M. Ma, Carbon 49, 1550 (2011)

    CAS  Google Scholar 

  9. A. Belahmar, A. Chouiyakh, J. Nanosci. Technol. 2, 81 (2016)

    Google Scholar 

  10. C.H. Liu, X.Q. Chen, Y.F. Hu, T.K. Sham, Q.J. Sun, J.B. Chang, X. Gao, X.H. Sun, S.D. Wang, ACS Appl. Mater. Interfaces 5, 5072 (2013)

    CAS  Google Scholar 

  11. B. Neppolian, C. Wang, M. Ashokkumar, Ultrason. Sonochem. 21, 1948 (2014)

    CAS  Google Scholar 

  12. V.K. Gupta, N. Atar, M.L. Yola, M. Eryilmaz, H. Torul, U. Tamer, I.H. Boyaci, Z. Üstündaǧ, J. Colloid Interface Sci. 406, 231 (2013)

    CAS  Google Scholar 

  13. J. Huang, J. Tian, Y. Zhao, S. Zhao, Sens. Actuators B 206, 570 (2015)

    CAS  Google Scholar 

  14. Y.H. Chen, R. Kirankumar, C.L. Kao, P.Y. Chen, Electrochim. Acta 205, 124 (2016)

    CAS  Google Scholar 

  15. T. Wu, L. Zhang, J. Gao, Y. Liu, C. Gao, J. Yan, J. Mater. Chem. A 1, 7384 (2013)

    CAS  Google Scholar 

  16. Y. Qin, X. Dai, X. Zhang, X. Huang, H. Sun, D. Gao, Y. Yu, P. Zhang, Y. Jiang, H. Zhuo, A. Jin, H. Wang, J. Mater. Chem. A 4, 3865 (2016)

    CAS  Google Scholar 

  17. N. Atar, T. Eren, B. Demirdögen, M.L. Yola, M.O. Çağlayan, Ionics 21, 2285 (2015)

    CAS  Google Scholar 

  18. Q. Shi, G. Diao, S. Mu, Electrochim. Acta 133, 335 (2014)

    CAS  Google Scholar 

  19. H. Wang, J. Liu, X. Wu, Z. Tong, Z. Deng, Nanotechnology 24, (2013)

  20. C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 4, 2429 (2010)

    CAS  Google Scholar 

  21. X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Adv. Mater. 20, 4490 (2008)

    CAS  Google Scholar 

  22. O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, J. Mater. Chem. 22, 13773 (2012)

    CAS  Google Scholar 

  23. D. He, L. Shen, X. Zhang, Y. Wang, N. Bao, H.H. Kung, AIChE J. 60, 2757 (2014)

    CAS  Google Scholar 

  24. H. Li, J. Wen, R. Yu, C. Bai, Y. Xu, Z.H. Liu, S. Sun, RSC Adv. 5, 26856 (2015)

    CAS  Google Scholar 

  25. Z. Luo, L. Zhu, Y. Huang, H. Tang, Synth. Met. 175, 88 (2013)

    CAS  Google Scholar 

  26. H. Liu, T. Li, Y. Liu, G. Qin, X. Wang, T. Chen, Nanoscale Res. Lett. 11, 211 (2016)

    Google Scholar 

  27. H. Quan, Y. Shao, C. Hou, Q. Zhang, H. Wang, Y. Li, Mater. Sci. Eng. B 178, 769 (2013)

    CAS  Google Scholar 

  28. R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Mater. Lett. 160, 355 (2015)

    CAS  Google Scholar 

  29. S. Yoon, I. In, J. Mater. Sci. 46, 1316 (2011)

    CAS  Google Scholar 

  30. H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mater. Chem. Phys. 94, 449 (2005)

    CAS  Google Scholar 

  31. M.P. Mallin, C.J. Murphy, Nano Lett. 2, 1235 (2002)

    CAS  Google Scholar 

  32. P.-G. Ren, D.-X. Yan, X. Ji, T. Chen, Z.-M. Li, Nanotechnology 22, 55705 (2011)

    Google Scholar 

  33. H.J. Chu, C.Y. Lee, N.H. Tai, Carbon 80, 725 (2014)

    CAS  Google Scholar 

  34. S. Sadhukhan, T.K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, D. Chattopadhyay, Mater. Res. Bull. 79, 41 (2016)

    CAS  Google Scholar 

  35. R. Feng, W. Zhou, G. Guan, C. Li, D. Zhang, Y. Xiao, L. Zheng, W. Zhu, J. Mater. Chem. 22, 3982 (2012)

    CAS  Google Scholar 

  36. N.I. Ikhsan, P. Rameshkumar, N.M. Huang, Electrochim. Acta 192, 392 (2016)

    CAS  Google Scholar 

  37. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    CAS  Google Scholar 

  38. T. Som, B. Karmakar, Nano Res. 2, 607 (2009)

    CAS  Google Scholar 

  39. D.S. Sheny, J. Mathew, D. Philip, Spectrochim. Acta A 79, 254 (2011)

    CAS  Google Scholar 

  40. L. Tang, F. Duan, M. Chen, J. Mater. Sci. 28, 7769 (2017)

    CAS  Google Scholar 

  41. L. Yuan, C. Wan, X. Ye, F. Wu, Electrochim. Acta 213, 115 (2016)

    CAS  Google Scholar 

  42. V. Veeramani, B. Dinesh, S.-M. Chen, R. Saraswathi, J. Mater. Chem. A 4, 3304 (2016)

    CAS  Google Scholar 

  43. Y. Wang, Q. Su, J. Mater. Sci. 27, 4752 (2016)

    CAS  Google Scholar 

  44. A. Bello, M. Fabiane, D. Dodoo-Arhin, K.I. Ozoemena, N. Manyala, J. Phys. Chem. Solids 75, 109 (2014)

    CAS  Google Scholar 

  45. B. Ankamwar, P. Das, U.K. Sur, Indian J. Phys. 90, 391 (2016)

    CAS  Google Scholar 

  46. Y.J. Oh, J.J. Yoo, Y. Il Kim, J.K. Yoon, H.N. Yoon, J.H. Kim, S.B. Park, Electrochim. Acta 116, 118 (2014)

    CAS  Google Scholar 

  47. K. Zhang, L. Mao, L.L. Zhang, H.S. On Chan, X.S. Zhao, J. Wu, J. Mater. Chem. 21, 7302 (2011)

    CAS  Google Scholar 

  48. Y. Chen, Z. Zhang, Z. Huang, H. Zhang, Int. J. Hydrogen Energy 42, 7186 (2017)

    CAS  Google Scholar 

  49. G. Zhang, Y. Kuang, J. Liu, Y. Cui, J. Chen, H. Zhou, Electrochem. Commun. 12, 1233 (2010)

    CAS  Google Scholar 

  50. D. Zheng, C. Hu, T. Gan, X. Dang, S. Hu, Sens. Actuators B 148, 247 (2010)

    CAS  Google Scholar 

  51. W. Li, L. Kuai, Q. Qin, B. Geng, J. Mater. Chem. A 1, 7111 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK; Grant No. 115M456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Yıldız.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çıplak, Z., Yıldız, N. A parametric study for the synthesis of graphene–AgAu nanocomposites: performances as electrode material. J Mater Sci: Mater Electron 29, 10411–10426 (2018). https://doi.org/10.1007/s10854-018-9097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9097-x

Navigation