Skip to main content

Advertisement

Log in

Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we developed a novel heterostructure based on the coupling of a metal organic framework (MOF LEEL-037) with an inorganic semiconductor (SrZrO3) for two photocatalytic applications: hydrogen evolution from water splitting and the degradation of indigo carmine dye. A complete study of the structural, morphological, textural, optical, electronic, and electrochemical properties of MOF, SrZrO3 and the heterostructure is presented through X-ray diffraction, scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy (UV–Vis), photoluminescence spectroscopy and electrochemical impedance spectroscopy, evaluating the effect of these parameters on the catalytic performance of the materials. The heterostructure formation was studied by transmission electron microscopy, varying the loading of LEEL-037 from 0.5 to 5%. Microscope images corroborate the effective dispersion of LEEL-037 and the appropriate contact between the metal organic framework and SrZrO3 particles. It was found that the photocatalytic activity of SrZrO3 under UV light was significantly enhanced with the incorporation of MOF LEEL-037, which enhances the charge separation and transport, leading to an improved photocatalytic performance. After 1 h of reaction, the heterostructure with the optimal amount of LEEL-037 (5%) exhibited a hydrogen evolution of 66.9 µmol, corresponding to 6 times the activity of pure SrZrO3 (11.2 µmol). LEEL-037 exhibited an activity of 34.1 µmol, but the rate of hydrogen production was not constant. The stability and efficiency of the charge transference in the bare semiconductors and the heterostructure were studied through photoluminescence and electrochemical analysis, which demonstrated the suitable band coupling between SrZrO3 with MOF LEEL-037, the enhanced charge separation and injection from one semiconductor to another, and the reduction in the recombination of the electron–hole pairs. These studies and the integral correlation of the properties of the materials allowed to establish the path of the photogenerated charges and to propose the photocatalytic mechanisms involved in the reactions. The photocatalysts were also evaluated for the degradation of indigo carmine, where the highest dye degradation (69%) was exhibited by the heterostructure. Based on our results, we propose the use of the heterostructure SrZrO3-5% MOF LEEL-037, obtained by an easy and low cost method, as a suitable new photocatalytic material for environmental and energy applications, highlighting at the same time the promising properties of metal–organic frameworks for their coupling with a variety of inorganic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Bhosale, A. Kumar, F. Al Momani, R.B. Gupta, Int. J. Hydrog. Energy 42, 23474–23483 (2017)

    CAS  Google Scholar 

  2. A.L. Ortiz, M.J.M. Zaragoza, V. Collins-Martínez, Int. J. Hydrog. Energy 41, 23363–23379 (2016)

    Google Scholar 

  3. S. Shajahan, P. Arumugam, R. Rajendran, A.P. Munusamy, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.11.001

    Article  Google Scholar 

  4. W. Zhao, Y. Guo, Y. Faiz, W. Yuan et al., Appl. Catal. B 163, 288–297 (2015)

    CAS  Google Scholar 

  5. K.D. Veeranna, M.T. Lakshamaiah, R.T. Narayan, J. Hazard. Mater. 152, 1054–1059 (2008)

    Google Scholar 

  6. Y. Zhao, N. Hoivik, K. Wang, Nano Energy 30, 728–744 (2016)

    CAS  Google Scholar 

  7. S.J Yang, J.H. Im, T. Kim, K. Lee, C.R. Park, J. Hazard. Mater. 186, 376–382 (2011)

    CAS  Google Scholar 

  8. Y. Chang, K. Yu, C. Zhang, Z. Yang, Y. Feng, H. Hao, Y. Jiang, L. Lou, W. Zhou, S. Liu, Appl. Catal. B 215, 74–84 (2017)

    CAS  Google Scholar 

  9. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Chem. Commun. 48, 2858–2860 (2012)

    CAS  Google Scholar 

  10. J. Yu, X. Yu, Environ. Sci. Technol. 42, 4902–4907 (2008)

    CAS  Google Scholar 

  11. N. Serpone, J. Phys. Chem. B 110, 24287–24293 (2006)

    CAS  Google Scholar 

  12. P. Zhou, Z. Le, Y. Xie, J. Fang, J. Xu, J. Alloys Compd. 692, 170–177 (2017)

    CAS  Google Scholar 

  13. S. Shanavas, A. Priyadharsan, V. Vasanthakumar, A. Arunkumar, P.M. Anbarasan, S. Bharathkumar, J. Photochem. Photobiol. A 340, 96–108 (2017)

    CAS  Google Scholar 

  14. A. Priyadharsan, V. Vasanthakumar, S. Karthikeyan, V. Raj, S. Shanavas, P.M. Anbarasan, J. Photochem. Photobiol. A 346, 32–45 (2017)

    CAS  Google Scholar 

  15. R.S. Khnayzer, C.E. McCusker, B.S. Olaiya, F.N. Castellano, J. Am. Chem. Soc. 135, 14068–14070 (2013)

    CAS  Google Scholar 

  16. S. Park, M. Kim, J. Jung, J. Heo, E.M. Hong, S.M. Choi, J.Y. Lee, S. Cho, K. Hong, D.C. Lim, J. Power Sources 341, 411–418 (2017)

    CAS  Google Scholar 

  17. Y. Chen, A. Li, M. Jin, L.N. Wang, Z.H. Huang, J. Mater. Sci. Technol. 33, 728–733 (2017)

    Google Scholar 

  18. L. Zhang, J. Wang, D. Peng, Z. Zou, J. Phys. Chem. Solids 104, 1–7 (2017)

    Google Scholar 

  19. T. Ye, Z. Dong, Y. Zhao, J. Yu, F. Wang, S. Guo, Y. Zou, CrystEngComm 13, 3842–3847 (2011)

    CAS  Google Scholar 

  20. A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, Fuel 158, 66–71 (2015)

    CAS  Google Scholar 

  21. T. Qingwen, L. Zhang, J. Liu, N. Li, Q. Ma, J. Zhou, Y. Sun, RSC Adv. 5, 734–739 (2015)

    Google Scholar 

  22. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sánchez, Fuel 181, 670–679 (2016)

    CAS  Google Scholar 

  23. S. Kayal, B. Sun, A. Chakraborty, Energy 91, 772–781 (2015)

    CAS  Google Scholar 

  24. R. Wanga, L. Wu, B. Chica, L. Gu, G. Xu, Y. Yuan, J. Mater. 3, 58–62 (2017)

    Google Scholar 

  25. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)

    CAS  Google Scholar 

  26. C. Wang, K.E. deKrafft, W. Lin, J. Am. Chem. Soc. 134, 7211–7214 (2012)

    CAS  Google Scholar 

  27. X. Hao, Z. Jin, H. Yang, G. Lu, Y. Bi, Appl. Catal. B 210, 45–56 (2017)

    CAS  Google Scholar 

  28. T. Araya, M. Jia, J. Yang, P. Zhao, K. Cai, W. Ma, Y. Huang, Appl. Catal. B 203, 768–777 (2017)

    CAS  Google Scholar 

  29. H. Ramezanalizadeh, F. Manteghi, J. Photochem. Photobiol. A 346, 89–104 (2017)

    CAS  Google Scholar 

  30. A.A.M. Tapia, N.E. Pavón, L.E.C. Rojas, R.P. Rodríguez, J.M.R. Villanueva, CCDC 1434259: Exp. Cryst. Struct. Determination (2015). https://doi.org/10.5517/cc1k4gfl

  31. R.A. Spurr, H. Myer, Anal. Chem. 29, 760–762 (1957)

    CAS  Google Scholar 

  32. N. Rungjaroentawon, S. Onsuratoom, S. Chavadej, Int. J. Hydrog. Energy 37, 11061–11071 (2012)

    CAS  Google Scholar 

  33. T. Sreethawong, Y. Suzuki, S. Yoshikawa, J. Solid State Chem. 178, 329–338 (2005)

    CAS  Google Scholar 

  34. J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, J. Hazard. Mater. 190, 945–951 (2011)

    CAS  Google Scholar 

  35. J. Lia, S. Cheng, Int. J. Hydrog. Energy 34, 1377–1382 (2009)

    Google Scholar 

  36. T.A. Mulyati, R. Ediati, A. Rosyidah, Indonesian J. Chem. 15(2), 101–107 (2015)

    CAS  Google Scholar 

  37. M.P. Gutiérrez, M.A. Castellanos, M.A. Castellanos, Mundo Nano 4(1), 67–73 (2011)

    Google Scholar 

  38. M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330–1352 (2009)

    CAS  Google Scholar 

  39. J. Yin, Z. Zou, J. Ye, Chem. Phys. Lett. 378, 24–28 (2003)

    CAS  Google Scholar 

  40. N. Arora, D.P. Joshi, Indian J. Phys. 91(12), 1493–1501 (2017)

    CAS  Google Scholar 

  41. L.S. Cavalcante, A.Z. Simoes, J.C. Sczancoski, V.M. Longo, R. Erlo, M.T. Escote, E. Longo, J.A. Varela, Solid State Sci. 9, 1020–1027 (2007)

    CAS  Google Scholar 

  42. E.A. Kozlova, V.N. Panchenko, Z. Hasan, N.A. Khan, M.N. Timofeeva, S.H. Jhung, Catal. Today 266, 136–143 (2016)

    CAS  Google Scholar 

  43. X. Hu, H. Hu, C. Li, T. Li, X. Lou, Q. Chen, B. Hu, J. Solid State Chem. 242, 71–76 (2016)

    CAS  Google Scholar 

  44. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th Edn, Wiley, Hoboken, (2009), p. 424, ISBN 978-0-471-74493-1. https://doi.org/10.1002/aoc.1655

    Chapter  Google Scholar 

  45. G. Cabello, L. Lillo, C. Caro, G.E. Buono-Core, B. Chornik, M. Flores, C. Carrasco, C.A. Rodriguez, Ceram. Int. 40, 7761–7768 (2014)

    CAS  Google Scholar 

  46. J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114(30), 13118–13125 (2010)

    CAS  Google Scholar 

  47. H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607–627 (2014)

    CAS  Google Scholar 

  48. W. Liu, X.B. Yin, Trends Anal. Chem. 75, 86–96 (2016)

    CAS  Google Scholar 

  49. S.M. Yoon, S.C. Warren, B.A. Grzybowski, Angew. Chem. Int. Ed. 53, 4437–4441 (2014)

    CAS  Google Scholar 

  50. A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney et al., Science 343, 66–69 (2014)

    CAS  Google Scholar 

  51. P. Bera, H. Seenivasan, K.S. Rajam, V.K.W. Grips, Mater. Lett. 76, 103–105 (2012)

    CAS  Google Scholar 

  52. Y. Wang, Y. Miao, S. Li, L. Gao, G. Xiao, Mol. Catal. 436, 128–137 (2017)

    CAS  Google Scholar 

  53. B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin et al., Nature 505, 195 (2014)

    CAS  Google Scholar 

  54. H.M. Abd El Salam, T. Zaki, Inorg. Chim. Acta 471, 203–210 (2018)

    CAS  Google Scholar 

  55. A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpaa, Chemosphere 160, 30–44 (2016)

    CAS  Google Scholar 

  56. M.G. Coelho, G.M. de Lima, R. Augusti, D.A. Maria, J.D. Ardisson, Appl. Catal. B 96, 67–71 (2010)

    CAS  Google Scholar 

  57. T.T. Guaraldo, T.B. Zanoni, S.I.C. de Torresi, V.R. Gonzales, G.J. Zocolo, D.P. Oliveira, M.V.B. Zanoni, Chemosphere 91, 586–593 (2013)

    CAS  Google Scholar 

  58. M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Ind. Eng. Chem. Res. 55, 12733–12741 (2016)

    CAS  Google Scholar 

  59. Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, J. Mater. Sci. 28, 2923–2934 (2017)

    CAS  Google Scholar 

  60. Y.K. Abdel-Monem, J. Mater. Sci. 27, 5723–5728 (2016)

    CAS  Google Scholar 

  61. A. Bumajdad, M. Madkour, Y. Abdel-Moneam, M. El-Kemary, J. Mater. Sci. 49, 1743–1754 (2014)

    CAS  Google Scholar 

  62. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, J. Photochem. Photobiol. A 356, 166–176 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CONACYT (CB-256795-2016, CB-2014-237049, INFRA-2015-252753, PN-2015-01-487, NRF-2016-278729, and PhD Scholarship 386267), SEP (PROFOCIE-2014-19-MSU0011T-1, PRODEP-103.5/15/14156), UANL (PAICYT 2015), and FIC-UANL (PAIFIC 2015-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leticia M. Torres-Martínez or J. M. Rivera-Villanueva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfonso-Herrera, L.A., Huerta-Flores, A.M., Torres-Martínez, L.M. et al. Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J Mater Sci: Mater Electron 29, 10395–10410 (2018). https://doi.org/10.1007/s10854-018-9096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9096-y

Navigation