Advertisement

Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye

  • Luis A. Alfonso-Herrera
  • Ali M. Huerta-Flores
  • Leticia M. Torres-Martínez
  • J. M. Rivera-Villanueva
  • Daniel Julián Ramírez-Herrera
Article

Abstract

In this work, we developed a novel heterostructure based on the coupling of a metal organic framework (MOF LEEL-037) with an inorganic semiconductor (SrZrO3) for two photocatalytic applications: hydrogen evolution from water splitting and the degradation of indigo carmine dye. A complete study of the structural, morphological, textural, optical, electronic, and electrochemical properties of MOF, SrZrO3 and the heterostructure is presented through X-ray diffraction, scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy (UV–Vis), photoluminescence spectroscopy and electrochemical impedance spectroscopy, evaluating the effect of these parameters on the catalytic performance of the materials. The heterostructure formation was studied by transmission electron microscopy, varying the loading of LEEL-037 from 0.5 to 5%. Microscope images corroborate the effective dispersion of LEEL-037 and the appropriate contact between the metal organic framework and SrZrO3 particles. It was found that the photocatalytic activity of SrZrO3 under UV light was significantly enhanced with the incorporation of MOF LEEL-037, which enhances the charge separation and transport, leading to an improved photocatalytic performance. After 1 h of reaction, the heterostructure with the optimal amount of LEEL-037 (5%) exhibited a hydrogen evolution of 66.9 µmol, corresponding to 6 times the activity of pure SrZrO3 (11.2 µmol). LEEL-037 exhibited an activity of 34.1 µmol, but the rate of hydrogen production was not constant. The stability and efficiency of the charge transference in the bare semiconductors and the heterostructure were studied through photoluminescence and electrochemical analysis, which demonstrated the suitable band coupling between SrZrO3 with MOF LEEL-037, the enhanced charge separation and injection from one semiconductor to another, and the reduction in the recombination of the electron–hole pairs. These studies and the integral correlation of the properties of the materials allowed to establish the path of the photogenerated charges and to propose the photocatalytic mechanisms involved in the reactions. The photocatalysts were also evaluated for the degradation of indigo carmine, where the highest dye degradation (69%) was exhibited by the heterostructure. Based on our results, we propose the use of the heterostructure SrZrO3-5% MOF LEEL-037, obtained by an easy and low cost method, as a suitable new photocatalytic material for environmental and energy applications, highlighting at the same time the promising properties of metal–organic frameworks for their coupling with a variety of inorganic semiconductors.

Notes

Acknowledgements

The authors would like to thank CONACYT (CB-256795-2016, CB-2014-237049, INFRA-2015-252753, PN-2015-01-487, NRF-2016-278729, and PhD Scholarship 386267), SEP (PROFOCIE-2014-19-MSU0011T-1, PRODEP-103.5/15/14156), UANL (PAICYT 2015), and FIC-UANL (PAIFIC 2015-5).

References

  1. 1.
    R. Bhosale, A. Kumar, F. Al Momani, R.B. Gupta, Int. J. Hydrog. Energy 42, 23474–23483 (2017)CrossRefGoogle Scholar
  2. 2.
    A.L. Ortiz, M.J.M. Zaragoza, V. Collins-Martínez, Int. J. Hydrog. Energy 41, 23363–23379 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Shajahan, P. Arumugam, R. Rajendran, A.P. Munusamy, Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.11.001 Google Scholar
  4. 4.
    W. Zhao, Y. Guo, Y. Faiz, W. Yuan et al., Appl. Catal. B 163, 288–297 (2015)CrossRefGoogle Scholar
  5. 5.
    K.D. Veeranna, M.T. Lakshamaiah, R.T. Narayan, J. Hazard. Mater. 152, 1054–1059 (2008)CrossRefGoogle Scholar
  6. 6.
    Y. Zhao, N. Hoivik, K. Wang, Nano Energy 30, 728–744 (2016)CrossRefGoogle Scholar
  7. 7.
    S.J Yang, J.H. Im, T. Kim, K. Lee, C.R. Park, J. Hazard. Mater. 186, 376–382 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Chang, K. Yu, C. Zhang, Z. Yang, Y. Feng, H. Hao, Y. Jiang, L. Lou, W. Zhou, S. Liu, Appl. Catal. B 215, 74–84 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Chem. Commun. 48, 2858–2860 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Yu, X. Yu, Environ. Sci. Technol. 42, 4902–4907 (2008)CrossRefGoogle Scholar
  11. 11.
    N. Serpone, J. Phys. Chem. B 110, 24287–24293 (2006)CrossRefGoogle Scholar
  12. 12.
    P. Zhou, Z. Le, Y. Xie, J. Fang, J. Xu, J. Alloys Compd. 692, 170–177 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Shanavas, A. Priyadharsan, V. Vasanthakumar, A. Arunkumar, P.M. Anbarasan, S. Bharathkumar, J. Photochem. Photobiol. A 340, 96–108 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Priyadharsan, V. Vasanthakumar, S. Karthikeyan, V. Raj, S. Shanavas, P.M. Anbarasan, J. Photochem. Photobiol. A 346, 32–45 (2017)CrossRefGoogle Scholar
  15. 15.
    R.S. Khnayzer, C.E. McCusker, B.S. Olaiya, F.N. Castellano, J. Am. Chem. Soc. 135, 14068–14070 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Park, M. Kim, J. Jung, J. Heo, E.M. Hong, S.M. Choi, J.Y. Lee, S. Cho, K. Hong, D.C. Lim, J. Power Sources 341, 411–418 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Chen, A. Li, M. Jin, L.N. Wang, Z.H. Huang, J. Mater. Sci. Technol. 33, 728–733 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, J. Wang, D. Peng, Z. Zou, J. Phys. Chem. Solids 104, 1–7 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Ye, Z. Dong, Y. Zhao, J. Yu, F. Wang, S. Guo, Y. Zou, CrystEngComm 13, 3842–3847 (2011)CrossRefGoogle Scholar
  20. 20.
    A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, Fuel 158, 66–71 (2015)CrossRefGoogle Scholar
  21. 21.
    T. Qingwen, L. Zhang, J. Liu, N. Li, Q. Ma, J. Zhou, Y. Sun, RSC Adv. 5, 734–739 (2015)CrossRefGoogle Scholar
  22. 22.
    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sánchez, Fuel 181, 670–679 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Kayal, B. Sun, A. Chakraborty, Energy 91, 772–781 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Wanga, L. Wu, B. Chica, L. Gu, G. Xu, Y. Yuan, J. Mater. 3, 58–62 (2017)Google Scholar
  25. 25.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)CrossRefGoogle Scholar
  26. 26.
    C. Wang, K.E. deKrafft, W. Lin, J. Am. Chem. Soc. 134, 7211–7214 (2012)CrossRefGoogle Scholar
  27. 27.
    X. Hao, Z. Jin, H. Yang, G. Lu, Y. Bi, Appl. Catal. B 210, 45–56 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Araya, M. Jia, J. Yang, P. Zhao, K. Cai, W. Ma, Y. Huang, Appl. Catal. B 203, 768–777 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Ramezanalizadeh, F. Manteghi, J. Photochem. Photobiol. A 346, 89–104 (2017)CrossRefGoogle Scholar
  30. 30.
    A.A.M. Tapia, N.E. Pavón, L.E.C. Rojas, R.P. Rodríguez, J.M.R. Villanueva, CCDC 1434259: Exp. Cryst. Struct. Determination (2015).  https://doi.org/10.5517/cc1k4gfl
  31. 31.
    R.A. Spurr, H. Myer, Anal. Chem. 29, 760–762 (1957)CrossRefGoogle Scholar
  32. 32.
    N. Rungjaroentawon, S. Onsuratoom, S. Chavadej, Int. J. Hydrog. Energy 37, 11061–11071 (2012)CrossRefGoogle Scholar
  33. 33.
    T. Sreethawong, Y. Suzuki, S. Yoshikawa, J. Solid State Chem. 178, 329–338 (2005)CrossRefGoogle Scholar
  34. 34.
    J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, J. Hazard. Mater. 190, 945–951 (2011)CrossRefGoogle Scholar
  35. 35.
    J. Lia, S. Cheng, Int. J. Hydrog. Energy 34, 1377–1382 (2009)CrossRefGoogle Scholar
  36. 36.
    T.A. Mulyati, R. Ediati, A. Rosyidah, Indonesian J. Chem. 15(2), 101–107 (2015)CrossRefGoogle Scholar
  37. 37.
    M.P. Gutiérrez, M.A. Castellanos, M.A. Castellanos, Mundo Nano 4(1), 67–73 (2011)Google Scholar
  38. 38.
    M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330–1352 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Yin, Z. Zou, J. Ye, Chem. Phys. Lett. 378, 24–28 (2003)CrossRefGoogle Scholar
  40. 40.
    N. Arora, D.P. Joshi, Indian J. Phys. 91(12), 1493–1501 (2017)CrossRefGoogle Scholar
  41. 41.
    L.S. Cavalcante, A.Z. Simoes, J.C. Sczancoski, V.M. Longo, R. Erlo, M.T. Escote, E. Longo, J.A. Varela, Solid State Sci. 9, 1020–1027 (2007)CrossRefGoogle Scholar
  42. 42.
    E.A. Kozlova, V.N. Panchenko, Z. Hasan, N.A. Khan, M.N. Timofeeva, S.H. Jhung, Catal. Today 266, 136–143 (2016)CrossRefGoogle Scholar
  43. 43.
    X. Hu, H. Hu, C. Li, T. Li, X. Lou, Q. Chen, B. Hu, J. Solid State Chem. 242, 71–76 (2016)CrossRefGoogle Scholar
  44. 44.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th Edn, Wiley, Hoboken, (2009), p. 424, ISBN 978-0-471-74493-1.  https://doi.org/10.1002/aoc.1655 Google Scholar
  45. 45.
    G. Cabello, L. Lillo, C. Caro, G.E. Buono-Core, B. Chornik, M. Flores, C. Carrasco, C.A. Rodriguez, Ceram. Int. 40, 7761–7768 (2014)CrossRefGoogle Scholar
  46. 46.
    J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114(30), 13118–13125 (2010)CrossRefGoogle Scholar
  47. 47.
    H.J. Kim, J.H. Lee, Sens. Actuators B 192, 607–627 (2014)CrossRefGoogle Scholar
  48. 48.
    W. Liu, X.B. Yin, Trends Anal. Chem. 75, 86–96 (2016)CrossRefGoogle Scholar
  49. 49.
    S.M. Yoon, S.C. Warren, B.A. Grzybowski, Angew. Chem. Int. Ed. 53, 4437–4441 (2014)CrossRefGoogle Scholar
  50. 50.
    A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney et al., Science 343, 66–69 (2014)CrossRefGoogle Scholar
  51. 51.
    P. Bera, H. Seenivasan, K.S. Rajam, V.K.W. Grips, Mater. Lett. 76, 103–105 (2012)CrossRefGoogle Scholar
  52. 52.
    Y. Wang, Y. Miao, S. Li, L. Gao, G. Xiao, Mol. Catal. 436, 128–137 (2017)CrossRefGoogle Scholar
  53. 53.
    B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin et al., Nature 505, 195 (2014)CrossRefGoogle Scholar
  54. 54.
    H.M. Abd El Salam, T. Zaki, Inorg. Chim. Acta 471, 203–210 (2018)CrossRefGoogle Scholar
  55. 55.
    A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpaa, Chemosphere 160, 30–44 (2016)CrossRefGoogle Scholar
  56. 56.
    M.G. Coelho, G.M. de Lima, R. Augusti, D.A. Maria, J.D. Ardisson, Appl. Catal. B 96, 67–71 (2010)CrossRefGoogle Scholar
  57. 57.
    T.T. Guaraldo, T.B. Zanoni, S.I.C. de Torresi, V.R. Gonzales, G.J. Zocolo, D.P. Oliveira, M.V.B. Zanoni, Chemosphere 91, 586–593 (2013)CrossRefGoogle Scholar
  58. 58.
    M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Ind. Eng. Chem. Res. 55, 12733–12741 (2016)CrossRefGoogle Scholar
  59. 59.
    Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, J. Mater. Sci. 28, 2923–2934 (2017)Google Scholar
  60. 60.
    Y.K. Abdel-Monem, J. Mater. Sci. 27, 5723–5728 (2016)Google Scholar
  61. 61.
    A. Bumajdad, M. Madkour, Y. Abdel-Moneam, M. El-Kemary, J. Mater. Sci. 49, 1743–1754 (2014)CrossRefGoogle Scholar
  62. 62.
    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, J. Photochem. Photobiol. A 356, 166–176 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luis A. Alfonso-Herrera
    • 1
    • 2
  • Ali M. Huerta-Flores
    • 1
  • Leticia M. Torres-Martínez
    • 1
  • J. M. Rivera-Villanueva
    • 2
  • Daniel Julián Ramírez-Herrera
    • 2
  1. 1.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo León, UANLSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Veracruzana, UVOrizabaMexico

Personalised recommendations