Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications

  • Ahmed Hashim
  • Ibrahim R. Agool
  • Kadhim J. Kadhim


Preparation of (PVA-PEG-PVP-Fe3O4) magnetic nanocomposites and studying their structural, electrical and optical properties have been investigated. The results showed that the D.C., A.C. electrical and optical properties of (PVA-PEG-PVP) blend are improved with increase in Fe3O4 nanoparticles concentration. The (PVA-PEG-PVP-Fe3O4) nanocomposites tested for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications with high quality, lightweight and good elastic. The results of showed that the melting and solidification time for thermal energy storage and release decrease with adding Fe3O4 nanoparticles concentrations. The attenuation coefficients of gamma radiation increase with increase in nanoparticles concentration. The inhibition zone for antibacterial application increases with increase in Fe3O4 nanoparticles concentration. The nanocomposites have highly sensitivity for humidity.


  1. 1.
    S. Sagadevan, K. Pal, Z.Z. Chowdhury, Scalable synthesis of CdS–Graphene nanocomposite spectroscopic characterizations. J. Mater. Sci.: Mater. Electron. (2017). CrossRefGoogle Scholar
  2. 2.
    R. Naeem, R. Yahya, A. Pandikumar, H.N. Ming, M. Mazhar, Optical and optoelectronic properties of morphology and structure controlled ZnO, CdO and PbO thin films deposited by electric field directed aerosol assisted CVD. J. Mater. Sci.: Mater. Electron. (2016). CrossRefGoogle Scholar
  3. 3.
    R.T. Abdulwahid, O.G. Abdullah, S.B. Aziz, S.A. Hussein, F.F. Muhammad, M.Y. Yahya, The study of structural and optical properties of PVA:PbO2 based solid polymer nanocomposites. J. Mater. Sci.: Mater. Electron. (2016). CrossRefGoogle Scholar
  4. 4.
    A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, M.Z.A. Yahya, Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Int. J. Appl. Sci. Technol. 3, 5 (2013)Google Scholar
  5. 5.
    J.B. Bhaiswar, M.Y. Salunkhe, S.P. Dongre, B.T. Kumbhare, Comparative study on thermal stability and optical properties of PANI/CdS and PANI/PbS nanocomposite. IOSR J. Appl. Phys. (ICAET-2014) 80, 79–82 (2014)Google Scholar
  6. 6.
    W. Al-Taa’y, M.A. Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films. Int. J. Polym. Sci. 2014(697809), 6 (2014)Google Scholar
  7. 7.
    I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. 21(2), 444–453 (2017)Google Scholar
  8. 8.
    I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397–403 (2017)Google Scholar
  9. 9.
    M.A. Habeeb, A. Hashim, A. Hadi, Fabrication of new nanocomposites: CMC-PAA-PbO2 nanoparticles for piezoelectric sensors and gamma radiation shielding applications. Sensor Lett. 15(9), 785–790 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Hashim, M. Ali Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sensor Lett. 15(9), 758–761 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Hadi, A. hashim, development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. 62(12), 1044–1049 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Hashim, A. Hadi, Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. 62(12), 1050–1056 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Hashim, Q. Hadi, Novel of (Niobium Carbide/Polymer Blend) nanocomposites: fabrication and characterization for pressure sensor. Sensor Lett. 15(11), 951–953 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Al-Ramadhan, A. Hashim, A.J.K. Algidsawi, The D.C. electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. 1400, 1 (2011)Google Scholar
  15. 15.
    A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62(11), 978–983 (2017)CrossRefGoogle Scholar
  16. 16.
    I.R. Agool, K.J. Kadhim, A. Hashim, Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int. J. Plast. Technol 20(1), 121–127 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Hashim, A. Hadi, Synthesis and characterization of (MgO-Y2O3-CuO) nanocomposites for novel humidity sensor application. Sens. Lett. 15, 858–861 (2017)Google Scholar
  18. 18.
    M.B. Ahmad, K. Shameli, W.M.Z. Wan, N.A. Ibrahim, M. Darroudi, Synthesis and characterization of silver/clay/starch bionanocomposites by green method. Aust. J. Basic Appl. Sci. 4(7), 2158–2165 (2010)Google Scholar
  19. 19.
    R.A. Hule, D.J. Pochan, Polymer nanocomposites for biomedical applications. J. MRS Bull. 32, 354–358 (2007)CrossRefGoogle Scholar
  20. 20.
    E. Al-Sarraya, I. Akkurt, K. Günoglu, A. Evcinc, N. Bezir, Radiation shielding properties of some composite panel. Acta Phys. Pol. A (2017). CrossRefGoogle Scholar
  21. 21.
    A. Ruhal, J.S. Rana, P. Ruhal, A. Kumar, M. Ruhil, Antibacterial nanocomposite of silver and genlatin nanofibers for medical applications. Int. J. Technol. Res. In Eng. 1(4), 177–182 (2013)Google Scholar
  22. 22.
    A. Kaur, A. Kaur, N. Shahi, How nanotechnology works in medicine. Int. J. Electron. Comput. Sci. Eng. 1(4), 2452–2459 (2012)Google Scholar
  23. 23.
    M. Singh, S. Singh, S. Prasada, I. Gambhir, Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J. Nanomater. Biostruct. 3(3), 115–122 (2008)Google Scholar
  24. 24.
    V. Monzillo, C.D. Valle, M. Corbella, E. Percivalle, D. Sassera, D. Scevola, P. Marone, Antibacterial activity and cytotoxic effect of SIAB-GV3. J. New Microbiol. 37, 535–541 (2014)Google Scholar
  25. 25.
    M.A. Ansari, H.M. Khan, A.A. Khan, A. Sultan, A. Azam, M. Shahid, F. Shujatullah, Antibacterial activity of silver nanoparticles dispersion against mssa and mrsa isolated from wounds in a tertiary care hospital of north India. Int. J. Appl. Biol. Pharmaceut. Technol. 2(4), 34–42 (2011)Google Scholar
  26. 26.
    N.R. Patel, P.P. Gohil, A review on biomaterials: scope, applications and human anatomy significance. Int. J. Emerg. Technol. Adv. Eng. 2, 4, 91–101 (2012)Google Scholar
  27. 27.
    S.H.R. Ali, M.M.A. Almaatoq, A.S. Mohamed, Classifications, surface characterization and standardization of nanobiomaterials. Int. J. Eng. Technol. 2(3), 187–199 (2013)CrossRefGoogle Scholar
  28. 28.
    K.-J. Shieh, M. Li, Y.-H. Lee, S.-D. Sheu, Y.-T. Liu, Y.-C. Wang, Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light. J. Nanomed. 2(2),121–126 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Senthil, C. Ramesh, Biogenic synthesis of Fe3O4 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on pseudomonas aeruginosa. Dig. J. Nanomater. Biostruct. 7(3), 1655–1660 (2012)Google Scholar
  30. 30.
    S. Ranghar, P. Sirohi, P. Verma, V. Agarwa, Nanoparticle-based drug delivery systems: promising approaches against infections. J. Brazilian. Arch. Biol. Technol. 57(2), 209–222 (2014)CrossRefGoogle Scholar
  31. 31.
    V.G. Kadajji, G.V. Betageri, Water soluble polymers for pharmaceutical applications. J. Polym. 3, 1972–2009 (2011)Google Scholar
  32. 32.
    S.P. Nalawade, F. Picchioni, L.P.B.M. Janssen, Batch production of micron size particles from poly(ethylene glycol) using supercritical CO2 as a processing solvent. J. Chem. Eng. Sci. 62, 1712–1720 (2007)CrossRefGoogle Scholar
  33. 33.
    H.J. Oh, B.D. Freeman, J.E. McGrath, C.H. Lee, D.R. Paul, Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. J. Polym. 55, 235–247 (2014)CrossRefGoogle Scholar
  34. 34.
    A.-Q. Zhang, L.-J. Cai, L. Sui, D.-J. Qian, M. Chen, Reducing properties of polymers in the synthesis of noble metal nanoparticles. J. Polym. Rev. 53, 240–276 (2013)CrossRefGoogle Scholar
  35. 35.
    N. Saha, A. Saarai, N. Roy, T. Kitano, P. Saha, Polymeric biomaterial based hydrogels for biomedicalapplications. J. Biomater. Nanobiotechnol. 2, 85–90 (2011)CrossRefGoogle Scholar
  36. 36.
    K. Vimala, Y.M. Mohan, K. Varaprasad, N.N. Redd, S. Ravindra, N.S. Naidu, K.M. Raju, Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J. Biomater. Nanobiotechnol. 2, 55–64 (2011)CrossRefGoogle Scholar
  37. 37.
    N.B. Rithin Kumar, V. Crasta, B.M. Praveen, Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10–98) doped by ZnO nanoparticles. Phys. Res. Int 2014(742378), 9 (2014). CrossRefGoogle Scholar
  38. 38.
    N. Othman, N. Azlen, H. Ismail, Thermal properties of polyvinyl alcohol (PVOH)/corn starch blend film. Malays. Polym J. 6(6), 147–154 (2011)Google Scholar
  39. 39.
    I. Uslu, S. Keskin, A. Gul, T.C. Karabulut, M.L. Aksu, Preparation and properties of electrospun poly(vinyl alcohol) blended hybrid polymer with aloe vera and HPMC as wound dressing. Hacet. J. Biol. Chem. 38(1), 19–25 (2010)Google Scholar
  40. 40.
    S. Bhattacharya, D.K. Sharma, S. Saurabh, S. De, A. Sain, A. Nandi, A. Chowdhury, Plasticization of poly(vinylpyrrolidone) thin films under ambient humidity: insight from single-molecule tracer diffusion dynamics. J. Phys. Chem. 117(25), 7771–7782 (2013)CrossRefGoogle Scholar
  41. 41.
    A. Serov, A. Сhoukourov, D. Slavinska, H. Biederman, Preparation, basic properties, and potential application of plasmapolymer-based nanoclusters. WDS’10 Proceedings of Contributed Papers, Part III, 31–35 (2010)Google Scholar
  42. 42.
    Y. Yao, X. Chen, J. Zhu, B. Zeng, Z. Wu, X. Li, The effect of ambient humidity on the electrical properties of graphene oxide films. Nanoscale Res. Lett. 7, 363 (2012)CrossRefGoogle Scholar
  43. 43.
    J.K. Pandey, R.K. Swarnkar, K.K. Soumya, P. Dwivedi, M.K. Singh, S. Sundaram, R. Gopal, Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Appl. Biochem. Biotechnol. 174, 1021–1031 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Sedaghat, Synthesis, morphological, characterization and evaluation of antibacterial effects of Silver-Polyaniline nanocomposites against Escherichia coli. Int. J. Nano Dimension 6(2), 135–140 (2015)Google Scholar
  45. 45.
    P. Ghorbaniazar, A. Sepehrianazar, M. Eskandani, M. Nabi-Meibodi, M. Kouhsoltani, H. Hamishehkar, Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique. J. Adv. Pharmaceut. Bull. 5, 1–7 (2015)Google Scholar
  46. 46.
    S. Sugumaran, C.S. Bellan, M. Nadimuthu, Characterization of composite PVA–Al2O3 thin films prepared by dip coating method. Iran. Polym. J. 24(1), 63–74 (2015)CrossRefGoogle Scholar
  47. 47.
    B. Chatterjee, N. Kulshrestha, P.N. Gupta, Electrical properties of starch-PVA biodegradable polymer blend. Phys. Scr. J. 90, 2 (2015)CrossRefGoogle Scholar
  48. 48.
    H.N. Chandrakala, H. Shivakumaraiah, R. Somashekarappa, S. Somashekar, C. Siddaramaiah, Poly(vinyl alcohol)/zincoxide-ceriumoxide nanocomposites: electrical, optical, structural and morphological characteristics. Indian J. Adv. Chem. Sci. 2, 103–106 (2014)Google Scholar
  49. 49.
    R. Divya, M. Meena, C.K. Mahadevan, C.M. Padma, Investigation on CuO dispersed PVA polymer films. J. Eng. Res. Appl. 4(5), 1–7 (2014)Google Scholar
  50. 50.
    V.S. Sangawar, M.C. Golchha, Evolution of the optical properties of polystyrene thin films filled with zinc oxide nanoparticles. Int. J. Sci. Eng. Res. 4, 6 (2013)Google Scholar
  51. 51.
    C. Uma Devi, A.K. Sharma, V.V.R.N. Rao, Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. J. Mater. Lett. 56, 167–174 (2002)CrossRefGoogle Scholar
  52. 52.
    T.G. Abdel-Malik, R.M. Abdel-Latif, A. Sawaby, S.M. Ahmed, Electrical properties of pure and doped polyvinyl alcohol (PVA) films using gold and aluminum electrodes. J. Appl. Sci. Res. 4(3), 331–336 (2008)Google Scholar
  53. 53.
    A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Int. J. Appl. Sci. Technol. 3, 5 (2013)Google Scholar
  54. 54.
    R.V. Waghmare, N.G. Belsare, F.C. Raghuwanshi, S.N. Shilaskar, Study of D.C. electrical conductivity of paranitroaniline doped (1:1) polyvinylchloride and poly(methyl methacrylate) polyblends. J. Bull. Mater. Sci. 30(2), 167–172 (2007)CrossRefGoogle Scholar
  55. 55.
    A.B. Elaydy, F.A. Akraiam, Enhancement of DC electrical conductivity and creep relaxation for PVA samples doped with SrCl2. Egypt. J. Solids 30(2), 189–197 (2007)Google Scholar
  56. 56.
    M. Khissi, M.El Hasnaoui, J. Belattar, M.F. Graça, M.E. Achour, L.C. Costa, DC electrical conductivity studies on copolymer/carbon black composites. J. Mater. Environ. Sci. 2(3), 281–284 (2011)Google Scholar
  57. 57.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.-C. zur Loye, Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Mater. J. 2, 1697–1733 (2009)CrossRefGoogle Scholar
  58. 58.
    T. Putjuso, P. Sangarun, Influence of annealing on the giant dielectric properties of CuO ceramics prepared by a simple PVA Sol-Gel. KKU Res. J. 17(2), 203–210 (2012)Google Scholar
  59. 59.
    M. Akram, A. Javed, T.Z. Rizvi, Dielectric properties of industrial polymer composite materials. Turk J. Phys. 29, 355–362 (2005)Google Scholar
  60. 60.
    S. Kitouni, Dielectric properties of triaxial porcelain prepared using raw native materials without any additions. Baikan J. Electr. Comput. Eng. 2(3), 128–131 (2014)Google Scholar
  61. 61.
    S. Prasher, M. Kumer, S. Singh, Analysis of electrical properties of Li3+ ion beam irradiated lexan polycarbonate. Asian J. Chem. 21, 10, 43–46 (2009)Google Scholar
  62. 62.
    M.F. AL-Mudhaffer, M.A. Nattiq, M.A. Jaber, Linear optical properties and energy loss function of Novolac: epoxy blend film. Scholars Res. Lib. Arch. Appl. Sci. Res. 4(4), 1731–7140 (2012)Google Scholar
  63. 63.
    S. Ilican, M. Caglar, Y. Caglar, The effect of deposition parameters on the physical properties of CdxZn1–xS films deposited by spray pyrolysis method. J. Optoelectron. Adv. Mater. 9(5), 1414–1417 (2007)Google Scholar
  64. 64.
    T.K. Hamad, R.M. Yusop, W.A. Al-Taa’y, B. Abdullah, E. Yousif, Laser induced modification of the optical properties of nano-ZnO doped PVC films. Int. J. Polym. Sci. (2014). CrossRefGoogle Scholar
  65. 65.
    O.G. Abdullah, S.R. Saeed, Effect of NaI doping on same physical characteristic of (PVA)0.9-(KHSO4)0.1 composite films. Chem. Mater. Res. 3, 11 (2013)Google Scholar
  66. 66.
    V.S. Sangawar, M.C. Golchha, Evolution of the optical properties of Polystyrene thin films filled with zinc oxide nanoparticles. Int. J. Sci. Eng. Res. 4(6), 2700–2705 (2013)Google Scholar
  67. 67.
    A. Begum, A. Hussain, A. Rahman, Optical and electrical properties of doped and Un doped Bi2S3–PVA films prepared by chemical drop method. J. Mater. Sci. Appl. 2, 163–168 (2011)Google Scholar
  68. 68.
    K.C. Lalithambika, K. Shanthakumari, S. Sriram, Optical properties of CdO thin films deposited by chemical bath method. Int. J. Chem. Technol. Res. 6(5), 3071–3077 (2014)Google Scholar
  69. 69.
    O.G. Abdullah, B.K. Aziz, S.A. Hussen, Optical Characterization of polyvinyl alcohol—ammonium nitrate polymer electrolytes films. J. Chem. Mater. Res. 3(9), 84–90 (2013)Google Scholar
  70. 70.
    A.M. Andriesh, M.S. Iovu, S.D. Shutov, Chalcogenide non-crystalline semiconductors in optoelectronics. J. Optoelectron. Adv. Mater. 4(3), 631–647 (2002)Google Scholar
  71. 71.
    J.H. Nahida, Spectrophotometric analysis for the UV-irradiated (PMMA). Int. J. Basic Appl. Sci. 12(2), 58–67 (2012)Google Scholar
  72. 72.
    K.C. Lalithambika, K. Shanthakumari, S. Sriram, Optical properties of CdO thin films deposited by Chemical Bath Method. Int. J. Chem. Tech. Res. CODEN 6(5), 3071–3077 (2014)Google Scholar
  73. 73.
    O.G. Abdullah, D.A. Tahir, S.S. Ahmad, H.T. Ahmad, Optical properties of PVA:CdCl2.H2O polymer electrolytes. IOSR J. Appl. Phys. 4(3), 52–57 (2013)CrossRefGoogle Scholar
  74. 74.
    R. Tintu, K. Saurav, K. Sulakshn, V.P. Nampoori, P. Radhakrishnan, S. Thomas, Ge28Se60Sb12/PVA composites films for photonic applications. J. Non-Oxide Glasses 2(4), 167–174 (2010)Google Scholar
  75. 75.
    M.H. Hassouni, K.A. Mishjil, S.S. Chiad, N.F. Habubi, Effect of gamma irradiation on the optical properties of Mg doped CdO Thin films deposited by Spray Pyrolysis. Int. Lett. Chem. Phys. Astron. 11, 26–37 (2013)CrossRefGoogle Scholar
  76. 76.
    O.G. Abdullah, D.R. Saber, L.O. Hamasalih, Complexion formation in PVA/PEO/CuCl2 solid polymer electrolyte. Univ. J. Mater. Sci. 3(1), 1–5 (2015)Google Scholar
  77. 77.
    N.B. Rithin Kumar, V. Crasta, R.F. Bhajantri, B.M. Praveen, Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J. Polym. 2014(846140), 7 (2014)Google Scholar
  78. 78.
    J. Ramesh Babu, K. Vijaya Kumar, Studies on structural and electrical properties of NaHCO3 doped PVA films for electrochemical cell applications. Int. J. Chem. Technol. Res. 7(1), 171–180 (2014)Google Scholar
  79. 79.
    S.H. Borova, O.M. Shevchuk, N.M. Bukartyk, E.Y. Nikitishyn, V.S. Tokarev, Nanocomposite films based on functional copolymers with embedded carbon nanotubes. Proceedings of the International Conference Nanomaterials: Applications and Properties 3(2) (2014)Google Scholar
  80. 80.
    A. Mohammad, K. Hooshyari, M. Javanbakht, M. Enhessari, Fabrication and characterization of poly vinyl alcohol/poly vinyl pyrrolidone/MnTiO nanocomposite membranes for PEM fuel cells. Iran. J. Energy Environ 4(2), 86–90 (2013)Google Scholar
  81. 81.
    K. Karthikeyan, N. Poornaprakash, N. Selvakumar, K. Jeyasubrmanian, Thermal properties and morphology of MgO-PVA nanocomposite film. J. Nanostruct. Polym. Nanocomposites 5(4), 83–88 (2009)Google Scholar
  82. 82.
    N.A. Elmarzugi, T. Adali, A.M. Bentaleb, EI Keleb, A.M. Hamza, Spectroscopic characterization of PEG-DNA biocomplexes by FTIR. J. Appl. Pharmaceut. Sci. 4(8), 6–10 (2014)Google Scholar
  83. 83.
    N. Arsalani, H. Fattahi, M. Nazarpoor, Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. J. Exp. Polym. Lett. 4(6), 329–338 (2010)CrossRefGoogle Scholar
  84. 84.
    D. Kumar, S. Karan Jat, P.K. Khanna, N. Vijayan, S. Banerjee, Synthesis, characterization, and studies of PVA/Co-Doped ZnO nanocomposite films. Int. J. Green Nanotechnol. 4, 408–416 (2012)CrossRefGoogle Scholar
  85. 85.
    C. Srikanth, C. Sridhar, B.B.M. Nagabhushana, R.D. Mathad, Characterization and DC conductivity of novel CuO doped polyvinyl alcohol (PVA) nano-composite films. J. Eng. Res. Appl. 4(10), 38–46 (2014)Google Scholar
  86. 86.
    S.D. Meshram, R.V. Rupnarayan, S.V. Jagtap, V.G. Mete, V.S. Sangawar, Synthesis and characterization of lead oxide nanoparticles. Int. J. Chem. Phys. Sci. 4, 83–88 (2015)Google Scholar
  87. 87.
    S.S. Shinde, A.Kher Jayant, V.Kulkarni Milind, Synthesis, characterization and electrical property of silver doped polypyrrole nanocomposites. Int. J. Innov. Res. Sci. Eng. Technol. 3, 6 (2014)CrossRefGoogle Scholar
  88. 88.
    G.H. Murhekar, A.R. Raut, Electrical properties of modified polyvinyl alcohol conjugates and doped modified polyvinyl alcohol conjugates. Int. J. Chem. Stud. 2(2), 77–82 (2014)Google Scholar
  89. 89.
    M. Pandey, G.M. Joshi, K. Deshmukh, J. Ahmad, Impedance spectroscopy and conductivity studies of CdCl2 doped polymer electrolyte. J. Adv. Mater. Lett. 6(2), 165–171 (2015)CrossRefGoogle Scholar
  90. 90.
    J. Ramesh Babu, K. Vijaya Kumar, Studies on structural and electrical properties of NaHCO3 doped PVA films for electrochemical cell applications. Int. J. Chem. Tech. Res. 7(1), 171–180 (2015)Google Scholar
  91. 91.
    S. Pervez Ansari, F. Mohammad, Electrical studies on the composite of polyaniline with zinc oxide nanoparticles. IUP J. Chem. III(4), 7–18 (2010)Google Scholar
  92. 92.
    P.A. Fartode, S.S. Yawale, S.P. Yawale, Study of transport and electrical properties of PEO: PVP: NaClO2 based polymer electrolyte. Int. J. Chem. Phys. Sci. 4, 60–64 (2015)Google Scholar
  93. 93.
    R. Divya, M. Meena, C.K. Mahadevan, C.M. Padma, Formation and properties of ZnO nanoparticle dispersed PVA films. Int. J. Eng. Res. Technol. 3(7), 722–725 (2014)Google Scholar
  94. 94.
    M.F. Ahmer, S. Hameed, Studies on the electrical conductivity measurement of organic/organic composite polyvinyl alcohol/polyaniline (PVA/PANI). Int. J. Adv. Res. Electr. Electron. Instrum. Engineering 3(10), 12731–12736 (2014)Google Scholar
  95. 95.
    A. Qureshi, A. Mergen, B. Aktas, Dielectric andmagnetic properties of YIG/PMMA nanocomposites. J. Phys. 153, 1–9 (2009)Google Scholar
  96. 96.
    D. Vaishnav, R.K. Goyal, Thermal and dielectric properties of high performance polymer/ZnO nanocomposites. IOP Conf. Ser. 64, 1–11 (2014)CrossRefGoogle Scholar
  97. 97.
    A. Srivastava, K.K. Jana, P. Maiti, D. Kumar, O. Parkash, Investigations on structural, mechanical, and dielectric properties of PVDF/ceramic composites. J. Eng. 2015(205490), 9 (2015)Google Scholar
  98. 98.
    H.N. Chandrakala, H. Shivakumaraiah, R. Somashekarappa, S. Somashekar, S. Chinmayee, Poly(vinyl alcohol)/zincoxide-ceriumoxide nanocomposites: electrical, optical, structural and morphological characteristics. Indian J. Adv. Chem. Sci. 2, 103–106 (2014)Google Scholar
  99. 99.
    A.L. Saroj, R.K. Singh, Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. J. Phys. Chem. Solids 73, 162–168 (2012)CrossRefGoogle Scholar
  100. 100.
    X. Huang, S. Wang, M. Zhu, K. Yang, P. Jiang, Y. Bando, D. Golberg, C. Zhi, Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization. J. Nanotechnol. 26, 1–10 (2015)Google Scholar
  101. 101.
    S.C. Mishra, Dielectric behavior of bio-waste reinforced polymer composites. Glob. J. Eng. Sci. Res. 1(9), 32–44 (2014)Google Scholar
  102. 102.
    S. Ju, M. Chen, H. Zhang, Z. Zhang, Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles. J. Expr. Polym. Lett. 8(9), 682–691 (2014)CrossRefGoogle Scholar
  103. 103.
    G. Chakraborty, K. Gupta, D. Rana, A. Kumar Meikap, Dielectric relaxation in polyvinyl alcohol—polypyrrole–multiwall carbon nanotube composites below room temperature. Adv. Nat. Sci. 4, 1–4 (2014)Google Scholar
  104. 104.
    A. Hojjat, B. Mahmood, Effect of EVA content upon the dielectric properties in LDPE-EVA films. Int. J. Eng. Res. 4(2), 69–72 (2015)CrossRefGoogle Scholar
  105. 105.
    O.G. Abdullah, G.M. Jamal, D.A. Tahir, S.R. Saeed, Electrical characterization of polyester reinforced by carbon black particles. Int. J. Appl. Phys. Math 1(2), 101–105 (2011)CrossRefGoogle Scholar
  106. 106.
    P. Vasudevan, S. Thomas, K.V. Arunkumar, S. Karthika, N.V. Unnikrishnan, Synthesis and dielectric studies of poly (vinyl pyrrolidone)/titanium dioxide nanocomposites. J. Mater. Sci. Eng. 73(4), 1 (2015). CrossRefGoogle Scholar
  107. 107.
    I. Tantis, G.C. Psarras, D. Tasis, Functionalized graphene—poly(vinyl alcohol) nanocomposites: physical and dielectric properties. J. Expr. Polym. Lett. 6(4), 283–292 (2012)CrossRefGoogle Scholar
  108. 108.
    C.M. Mathew, K. Kesavan, S. Rajendran, Structural and electrochemical analysis of PMMA based gel electrolyte membranes. Int. J. Electrochem. (2015). CrossRefGoogle Scholar
  109. 109.
    P. Pradeepa, M. Ramesh Prabhu, Investigations on the addition of different plasticizers in poly(ethylmethacrylate)/ poly(vinylidene fluoride-co-hexa fluro propylene) based polymer blend electrolyte system. Int. J. Chem. Technol. Res. 7(4), 2077–2084 (2015)Google Scholar
  110. 110.
    A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. Polym. Res. 20(43), 1–8 (2013)Google Scholar
  111. 111.
    P. Phukan, D. Saikia, Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. Int. J. Photoenergy (2013). CrossRefGoogle Scholar
  112. 112.
    G.A.M. Amin, M.H. Abd-El Salam, Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. J. Mater. Res. Expr. 1, 1–8 (2014)Google Scholar
  113. 113.
    Y. Feng, N. Dong, G. Wang, Y. Li, S.Z.K. Wang, L. Zhang, W.J. Blau, J. Wang, Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges. J. Optics Expr. 23(1), 559–569 (2015)CrossRefGoogle Scholar
  114. 114.
    E. Fortunati, F. Luzi, D. Puglia, R. Petrucci, J.M. Kenny, L. Torre, Processing of PLA nanocomposites with cellulose nanocrystalsextracted from Posidonia oceanica waste: Innovative reuse of coastal plant. J. Indust. Crops Prod. 67, 439–447 (2015)CrossRefGoogle Scholar
  115. 115.
    A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(43), 1–8 (2013)Google Scholar
  116. 116.
    S.A. Salman, N.A. Bakr, M.H. Mahmood, Preparation and study of some optical properties of (PVA- Ni(CH3COO)2) composites. Int. J. Curr. Res. 6(11) 9638–9643 (2014)Google Scholar
  117. 117.
    A.M. Abdelghany, E.M. Abdelrazek, D.S. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite. J. Spectrochim. Acta Part A 130, 302–308 (2014)CrossRefGoogle Scholar
  118. 118.
    D.E. Hegazy, M. Eid, M. Madani, Effect of Ni nano particles on thermal, optical and electrical behaviour of irradiated PVA/AAc films. Arab. J. Nucl. Sci. Appl. 47(1), 41–52 (2014)Google Scholar
  119. 119.
    R.T. Abdulwahid, O. Gh., S.B. Abdullah, S.A. Aziz, F.F. Hussein, M. Muhammad, Y. Yahya, The study of structural and optical properties of PVA:PbO2 based solid polymer nanocomposites. J. Mater. Sci. Mater Electron (2016). CrossRefGoogle Scholar
  120. 120.
    Z.H.E.M. Ghanipour, D. Dorranian, Effect of dye concentration on the optical properties of red-BS dye-doped PVA film. J. theoretical Applied Physics 8, 139 (2014)Google Scholar
  121. 121.
    M. Ali, Dielectric and optical properties of (PVAC-PEG—Ber) biocomposites. Aust. J. Basic Appl. Sci. 8(13), 623–629 (2014)Google Scholar
  122. 122.
    G. Attia, M.F.H. Abd El-kader, Structural, Optical and thermal characterization of PVA/2HEC polyblend films. Int. J. Electrochem. Sci. 8, 5672–5687 (2013)Google Scholar
  123. 123.
    A.M. El Sayed, W.M. Morsi, α-Fe2O3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49, 5378–5387 (2014)CrossRefGoogle Scholar
  124. 124.
    O.G. Abdullah, Influence of barium salt on optical behavior of PVA based solid polymer electrolytes. Eur. Sci. J. 10, 33 (2014)Google Scholar
  125. 125.
    N.K. Abbas, M.A. Habeeb, A.J.K. Algidsawi, Preparation of Chloro penta amine cobalt(iii) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Int. J. Polymer Science (2015). Scholar
  126. 126.
    O.G. Bakhtyar Aziz, D. Mohammed, Structural and optical properties of PVA:Na2S2O3 polymer electrolytes films. Indian J. Appl. Res. 3(11), 477–480 (2013)Google Scholar
  127. 127.
    M. Venkatarayappa, S. Kilarkaje, A. Prasad, D. Hundekal, Refractive index and dispersive energy of NiSO4 doped poly (ethylene oxide) films. J. Mater. Sci. Eng. A 1, 964–973 (2011)Google Scholar
  128. 128.
    S. Zhang, Q. Tao, Z. Wang, Z. Zhang, Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper. J. Mater. Chem. 22, 20166–20169 (2012)CrossRefGoogle Scholar
  129. 129.
    S. Harikrishnan, S. Kalaiselvam, Experimental Investigation of melting and solidification characterization of nanofluid as PCM for solar water heating system. Int. J. Emerg. Technol. Adv. Eng. 3, 628–635 (2013)Google Scholar
  130. 130.
    J. Huang, S. Lu, X. Kong, S. Liu, Y. Li, Form-stable phase change materials based on eutectic mixture of tetradecanol and fatty acids for building energy storage: preparation and performance analysis. J. Mater. 6, 4758–4775 (2013)CrossRefGoogle Scholar
  131. 131.
    M.K. Roy, R.G. Mahloniya, J. Bajpai, A.K. Bajpai, Spectroscopic and morphological evaluation of gamma radiation irradiated polypyrole based nanocomposites. J. Adv. Mater. Lett. 3(5), 426–432 (2012)CrossRefGoogle Scholar
  132. 132.
    G.A. Eid, A.I. Kany, M.M. El-Toony, I.I. Bashter, F.A. Gaber, Application of epoxy/Pb3O4 composite for gamma ray shielding. Arab J. Nucl. Sci. Appl. 46(2), 226–233 (2013)Google Scholar
  133. 133.
    L.M. Chaudhari, R. Nathuram, Absorption coefficient of polymers (polyvinyl alcohol) by using gamma energy of 0.39 MeV. Bulg. J. Phys. 37, 232–240 (2010)Google Scholar
  134. 134.
    Y.T. Prabhu, K. Venkateswara Rao, B. Siva Kumari, V.S.S. Kumar, T. Pavani, Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int. Nano. Lett. (2015). CrossRefGoogle Scholar
  135. 135.
    S. Ravikumar, R. Gokulakrishnan, The inhibitory effect of metal oxide nanoparticles against poultry pathogens. Int. J. Pharmaceut. Sci. Drug Res. 4(2), 157–159 (2012)Google Scholar
  136. 136.
    S.S. Behera, J.K. Patra, K. Pramanik, N. Panda, H. Thatoi, Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J. Nano Sci. Eng. 2, 196–200 (2012)CrossRefGoogle Scholar
  137. 137.
    M. Ghaffari-Moghaddam, H. Eslahi, Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab. J. Chem. 7, 846–855 (2014)CrossRefGoogle Scholar
  138. 138.
    R. Khandanlou, M.B. Ahmad, K. Shameli, E. Saki, K. Kalantari, Studies on properties of rice straw/polymer nanocomposites based on polycaprolactone and Fe3O4 nanoparticles and evaluation of antibacterial activity. Int. J. Mol. Sci. 15, 18466–18483 (2014)CrossRefGoogle Scholar
  139. 139.
    S.A. Kolpakov, T. Neil, C. Mou, K. Zhou, Toward a new generation of photonic humidity sensors. J. Sens. 14, 3986–4013 (2014)CrossRefGoogle Scholar
  140. 140.
    N.D. Md Sin, M.F. Tahar, M.H. Mamat, M. Rusop, Enhancement of nanocomposite for humidity sensor application. J. Recent Trends Nanotechnol. Mater. Sci. Eng. Mater. (2014). CrossRefGoogle Scholar
  141. 141.
    M. Joshi, R.P. Singh, Cross linking polymers (PVA & PEG) with TiO2 nanoparticles for humidity sensing. Sens. Transducers J. 110(11), 105–111 (2009)Google Scholar
  142. 142.
    R. Srivastava, Effect of poly ethylene glycol on moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)Google Scholar
  143. 143.
    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym. Mater. (2018). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed Hashim
    • 1
  • Ibrahim R. Agool
    • 2
  • Kadhim J. Kadhim
    • 2
  1. 1.Department of Physics, College of Education for Pure SciencesUniversity of BabylonHillahIraq
  2. 2.Department of Physics, College of ScienceAl-Mustansiriah UniversityBaghdadIraq

Personalised recommendations