Skip to main content
Log in

Enhancement of critical current density in MgB2 bulks burying sintered with commercial MgB2 powder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pellets of Mg and B mixture was buried by commercial MgB2 and one-step sintered at 800 °C, two-step sintered at 750 °C followed by 900 °C, and two-step sintered at 800 and 600 °C, respectively. Although an increasing amount of MgO was found in the burying sintered samples, the particles were considerably refined and embedded in the MgB2 grains, as the MgO is likely to be from the absorbed O2 on the commercial MgB2. Commercial MgB2 served as nucleation sites for newly formed MgB2 grains, which mostly generated at solid–solid reaction stage following Ostwald ripening mechanism. Apart from low crystallinity, such low-temperature synthesis of MgB2 induced defects including grain boundaries and second-phase particles as effective pinning centers. As a result, the critical current density is enhanced at high field in the burying sintered samples, in contrast with the one without burying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  CAS  Google Scholar 

  2. J.H. Kim, S. Oh, Y.-U. Heo, S. Hata, H. Kumakura, A. Matsumoto, M. Mitsuhara, S. Choi, Y. Shimada, M. Maeda, J.L. MacManus-Driscoll, S.X. Dou, NPG Asia Mater. 4, e3 (2012)

    Article  Google Scholar 

  3. G. Gajda, A. Morawski, R. Diduszko, T. Cetner, M.S.A. Hossain, K. Gruszka, D. Gajda, P. Przyslupski, J. Alloys Compd. 709, 473–480 (2017)

    Article  CAS  Google Scholar 

  4. Z.Q. Ma, Y.C. Liu, J. Huo, Z.M. Gao, J. Appl. Phys. 106, 113911 (2009)

    Article  Google Scholar 

  5. M.A. Susner, S.D. Bohnenstiehl, S.A. Dregia, M.D. Sumption, Y. Yang, J.J. Donovan, E.W. Collings, Appl. Phys. Lett. 104, 162603 (2014)

    Article  Google Scholar 

  6. P. Kováč, I. Hušek, T. Melišek, L. Kopera, M. Kulich, Supercond. Sci. Technol. 29, 10LT01 (2016)

    Article  Google Scholar 

  7. O. Erdem. E. Yanmaz, J. Mater. Sci.: Mater. Electron. 27, 6502–6510 (2016)

    CAS  Google Scholar 

  8. K. Berger, M.R. Koblischka, B. Douine, J. Noudem, P. Bernstein, T. Hauet, J. Leveque, IEEE T Appl. Supercond. 26, 6801005 (2016)

    Google Scholar 

  9. D. Gajda, A. Morawski, A.J. Zaleski, W. Häβler, K. Nenkov, M.A. Rindfleisch, E. Zuchowska, G. Gajda, T. Czujko, T. Cetner, M.S.A. Hossain, J. Appl. Phys. 117, 173908 (2015)

    Article  Google Scholar 

  10. P. Kováč, I. Hušek, T. Melišek, L. Kopera, J. Kováč, Supercond. Sci. Technol. 27, 065003 (2014)

    Article  Google Scholar 

  11. K.M. Devadas, S. Rahui, S. Thomas, N. Varghese, K. Vinod, U. Syamaprasad, S. Pradhan, M.K. Chattopadhyay, S.B. Roy, J. Alloys Compd. 509, 8038–8041 (2011)

    Article  CAS  Google Scholar 

  12. A. Kario, A. Morawski, W. Häβler, M. Herrmann, C. Rodig, M. Schubert, K. Nenkov, B. Holzapfel, L. Schultz, B.A. Glowacki, S.C. Hopkins, Supercond. Sci. Technol. 23, 025018; (2010)

    Article  Google Scholar 

  13. T. Nakane, K. Takahashi, H. Kitaguchi, H. Kumakura, Physica C 469, 1531–1535 (2009)

    Article  CAS  Google Scholar 

  14. M. Maeda, Y. Zhao, Y. Watanabe, H. Matsuoka, Y. Kubota, IEEE Trans. Appl. Supercond. 19, 2763–2766 (2009)

    Article  CAS  Google Scholar 

  15. Q. Cai, Y. Liu, Z. Ma, H. Li, L. Yu, Appl. Phys. Lett. 103, 132601 (2013)

    Article  Google Scholar 

  16. Q. Cai, Y. Liu, Q. Guo, Z. Ma, H. Li, Scr. Mater. 124, 184–188 (2016)

    Article  CAS  Google Scholar 

  17. C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)

    Article  Google Scholar 

  18. A. Yamamoto, J.-i. Shimoyama, S. Ueda, Y. Katsura, S. Horii, K. Kishio, Supercond. Sci. Technol. 18, 116–121 (2005)

    Article  CAS  Google Scholar 

  19. H.M. Rietveld, J. Appl. Cryst. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  20. Q. Cai, Y. Liu, Q. Guo, Z. Ma, Appl. Phys. A 123, 229 (2017)

    Article  Google Scholar 

  21. Z. Ma, Y. Liu, H. Jiang, Supercond. Sci. Technol. 23, 025005 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the China Postdoctoral Science Foundation Grant (Grant No. 2017M621429), the National High Technology Research and Development Program of China (Grant No. 2015AA042504) and the National Natural Science Foundation of China (Grant No. 51474156) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Liu, Y., Xiong, J. et al. Enhancement of critical current density in MgB2 bulks burying sintered with commercial MgB2 powder. J Mater Sci: Mater Electron 29, 10323–10328 (2018). https://doi.org/10.1007/s10854-018-9088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9088-y

Navigation