Advertisement

The effect of PtxPb intermetallic metastable phase on the crystal orientation in PZT thin films

  • Mi Xiao
  • Weikang Zhang
  • Zebin Zhang
  • Ping Zhang
Article
  • 69 Downloads

Abstract

In this paper, the crystal orientations of Pb(Zr0.52Ti0.48)O3 (PZT) thin films prepared by sol–gel method were investigated by using various initial annealing temperature in the modified annealing process. The films were put directly into the muffle furnace when the temperature reached at 300–500 °C, it’s clear that this modified annealing process made the PZT films presented better (111)-orientation. A PtxPb intermetallic metastable phase was observed by X-ray diffraction, which is considered to be connected with the promotion of the (111) preferred orientation. The PZT thin film with 400 °C initial annealing temperature has the maximum (111) diffraction intensity, remanent polarization and dielectric constant.

References

  1. 1.
    J.F. Scott, Science 315, 954 (2007)CrossRefGoogle Scholar
  2. 2.
    N. Setter, J. Eur. Ceram. Soc. 21, 1279 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Prabu, I.B. Shameem Banu, S. Gobalakrishnan, P.K. Praseetha, J. Mater. Sci.: Mater. Electron. 27, 5351 (2016)Google Scholar
  4. 4.
    P. Jegatheesan, N.V. Giridharan, J. Mater. Sci.: Mater. Electron. 23, 1103 (2012)Google Scholar
  5. 5.
    R. Mayen-Mondragon, J.M. Yanez-Limon, K.M. Moya-Canul, A. Herrera-Gomez, M. Vazquez-Lepe, F. Espinoza-Beltran, A.M. Lopez Beltran, J. Mater. Sci.: Mater. Electron. 24, 1981 (2013)Google Scholar
  6. 6.
    M. Okada, K. Tominaga, T. Araki, S. Katayama, Y. Sakashita, Jpn. J. Appl. Phys. 29, 718 (1990)CrossRefGoogle Scholar
  7. 7.
    M. Xiao, S.D. Li, Z.C. Lei, J. Mater. Sci.: Mater. Electron. 26, 4031 (2015)Google Scholar
  8. 8.
    M. Xiao, W.K. Zhang, Z.B. Zhang, P. Zhang, K.B. Lan, Appl. Phys. A 123, 487 (2017)CrossRefGoogle Scholar
  9. 9.
    H.J. Han, Y.N. Chen, Z.J. Wang, J. Ceram. Int. 41, 15208 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Zeng, M. Zhang, L. Wang et al., J. Phys. Condens. Matter 11(4), 1139 (1999)CrossRefGoogle Scholar
  11. 11.
    Z.J. Wang, R. Maeda, K. Kikuchi., J. Mater. Sci. 35, 5915 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Xiao, S. Li, Z. Lei, J. Mater. Sci.: Mater. Electron. 26, 4031 (2015)Google Scholar
  13. 13.
    K. Sreelalitha, K. Thyagarajan, J. Mater. Sci.: Mater. Electron. 27, 7415 (2016)Google Scholar
  14. 14.
    S.Y. Chen, I.W. Chen, J. Am. Ceram. Soc. 77, 2332 (1994)CrossRefGoogle Scholar
  15. 15.
    K. Nittala, S. Mhin, K.M. Dunnigan, D.S. Robinson, J.F. Ihlefeld, P.G. Kotula, G.L. Brennecka, J.L. Jones, J. Appl. Phys. 113, 244101 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Chen, I. Chen, J. Am. Ceram. Soc. 81, 97 (1998)CrossRefGoogle Scholar
  17. 17.
    G.A.C.M. Spierings, M.J.E. Ulenaers, G.L.M. Kampschoer, H.A.M. van Hal, P.K. Larsen, J. Appl. Phys. 70, 2290 (1991)CrossRefGoogle Scholar
  18. 18.
    K.G. Brooks, I.M. Reaney, R. Klissurska, Y. Huang, L. Bursill, N. Setter, J. Mater. Res. 7, 2540 (1994)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, P.P. Phule, J. Am. Ceram. Soc. 79, 495 (1996)CrossRefGoogle Scholar
  20. 20.
    M. Yaseen, X. Chen, W. Ren, Y. Feng, P. Shi, X. Wu, W. Zhu, Ceram. Int. 39, S471 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic and Information Engineering and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations