Skip to main content
Log in

Preparation of TiO2–(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of TiO2–(B) bronze was carried out by hydrothermal method using different precursors: (a) commercial anatase, (b) amorphous TiO2 prepared by O/W microemulsion method and (c) oil-in-water (O/W) microemulsion with freshly prepared amorphous TiO2. It is important to highlight this is the first report of the preparation of TiO2–(B) using an O/W microemulsion as a precursor. The effect of precursor type on the resulting TiO2 nanostructures, namely, their structural and morphological features were studied using X-ray diffraction, thermal analysis (TGA–DTA), Brunauer–Emmett–Teller, Raman spectroscopy and scanning electron microscopy (SEM–EDX). From commercial anatase powder, amorphous TiO2 ME and O/W microemulsion ME238 (NaOH/TiO2 molar ratio 238), biphasic nanoribbons were obtained: TiO2–(B) (88–92%) and anatase (8–12%). While from the O/W microemulsion ME30 (NaOH/TiO2 molar ratio 30) only anatase phase was obtained. The material with higher TiO2–(B) phase content, showed an increase in its reversible capacity, thus the crystalline nature of the precursor as well as the textural properties contribute to the electrode performance. Materials synthesized from commercial anatase and amorphous TiO2 ME exhibited similar charge retention (86–87%) despite the slight difference in reversible capacity, 210 and 180 mAh/g, respectively. It is noticed that TiO2–(B)–AME (prepared from amorphous TiO2 ME) exhibited the lowest capacity loss, e.g. the highest reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.S. Chen, L.A. Archer, X. Wen Lou, J. Mater. Chem. 21, 9912–9924 (2011)

    Article  Google Scholar 

  2. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364–5457 (2013)

    Article  Google Scholar 

  3. H.-Y. Wu, M.-H. Hon, C.-Y. Kuan, I.-C. Leu, J. Electron. Mater. 43, 1048–1054 (2014)

    Article  Google Scholar 

  4. A.G. Dylla, G. Henkelman, K.J. Stevenson, Acc. Chem. Res. 46, 1104–1112 (2013)

    Article  Google Scholar 

  5. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160–3163 (1998)

    Article  Google Scholar 

  6. A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, Angew. Chem. Int. Ed. 43, 2286–2288 (2004)

    Article  Google Scholar 

  7. G. Armstrong, A.R. Armstrong, J. Canales, P.G. Bruce, Chem. Commun. 19, 2454 (2005)

    Article  Google Scholar 

  8. N. Liu, X. Chen, J. Zhang, J.W. Schwank, Catal. Today 225, 34–51 (2014)

    Article  Google Scholar 

  9. M. Sanchez-Dominguez, M. Boutonnet, C. Solans, J. Nanopart. Res. 11, 1823 (2009)

    Article  Google Scholar 

  10. M. Sanchez-Dominguez, K. Pemartin, M. Boutonnet, Curr. Opin. Colloid Interface Sci. 17, 297–305 (2012)

    Article  Google Scholar 

  11. M. Boutonnet, J. Kizling, P. Stenius, G. Maire, Colloids Surf. 5, 209–225 (1982)

    Article  Google Scholar 

  12. M. Sanchez-Dominguez, L.F. Liotta, G. Di Carlo, G. Pantaleo, A.M. Venezia, C. Solans, M. Boutonnet, Catal. Today 158, 35–43 (2010)

    Article  Google Scholar 

  13. C. Tiseanu, V.I. Parvulescu, M. Boutonnet, B. Cojocaru, P.A. Primus, C.M. Teodorescu, C. Solans, M.S. Dominguez, Phys. Chem. Chem. Phys. 13, 17135–17145 (2011)

    Article  Google Scholar 

  14. M. Sanchez-Dominguez, H. Koleilat, M. Boutonnet, C. Solans, J. Dispersion Sci. Technol. 32, 1765–1770 (2011)

    Article  Google Scholar 

  15. K. Pemartin, C. Solans, G. Vidal-Lopez, M. Sanchez-Dominguez, Chem. Lett. 41, 1032–1034 (2012)

    Article  Google Scholar 

  16. G. Di Carlo, M. Lualdi, A.M. Venezia, M. Boutonnet, M. Sanchez-Dominguez, Catalysts 5, 442–459 (2015)

    Article  Google Scholar 

  17. R. Yoshida, Y. Suzuki, S. Yoshikawa, J. Solid State Chem. 178, 2179–2185 (2005)

    Article  Google Scholar 

  18. M. Sanchez-Dominguez, G. Morales-Mendoza, M.J. Rodriguez-Vargas, C.C. Ibarra-Malo, A.A. Rodriguez-Rodriguez, A.V. Vela-Gonzalez, S. Perez-Garcia, R. Gomez, J. Environ. Chemi. Eng. 3, 3037–3047 (2015)

    Article  Google Scholar 

  19. K. Pemartin-Biernath, A.V. Vela-González, M.B. Moreno-Trejo, C. Leyva-Porras, I.E. Castañeda-Reyna, I. Juárez-Ramírez, C. Solans, M. Sánchez-Domínguez, Materials 9, 480 (2016)

    Article  Google Scholar 

  20. C. Okoli, M. Sanchez-Dominguez, M. Boutonnet, S. Järås, C.n. Civera, C. Solans, G.R. Kuttuva, Langmuir 28, 8479–8485 (2012)

    Article  Google Scholar 

  21. K. Pemartin, C. Solans, J. Alvarez-Quintana, M. Sanchez-Dominguez, Colloids Surf. A 451, 161–171 (2014)

    Article  Google Scholar 

  22. T. Beuvier, M. Richard-Plouet, L. Brohan, J Phys. Chem. C 113, 13703–13706 (2009)

    Article  Google Scholar 

  23. Z. Liu, Y.G. Andreev, A. Robert Armstrong, S. Brutti, Y. Ren, P.G. Bruce, Prog. Nat. Sci.: Mater. Int. 23, 235–244 (2013)

    Article  Google Scholar 

  24. G.-N. Zhu, C.-X. Wang, Y.-Y. Xia, J. Power Sources 196, 2848–2853 (2011)

    Article  Google Scholar 

  25. M. Fehse, F. Fischer, C. Tessier, L. Stievano, L. Monconduit, J. Power Sources 231, 23–28 (2013)

    Article  Google Scholar 

  26. A.-L. Papa, N. Millot, L. Saviot, R. Chassagnon, O. Heintz, J. Phys. Chem. C 113, 12682–12689 (2009)

    Article  Google Scholar 

  27. M. Sanchez-Dominguez, C.A.C. Solans, in Smart Nanoparticles Technology, ed. by A. Hashim (Intech, Rijeka, 2012), pp. 195–220

    Google Scholar 

  28. V. Bellat, R. Chassagnon, O. Heintz, L. Saviot, D. Vandroux, N. Millot, Dalton Trans. 44, 1150–1160 (2015)

    Article  Google Scholar 

  29. D.L. Morgan, H.-W. Liu, R.L. Frost, E.R. Waclawik, J. Phys. Chem. C 114, 101–110 (2010)

    Article  Google Scholar 

  30. B. Yao, Y.F. Chan, X. Zhang, W. Zhang, Z. Yang, N. Wang, Appl. Phys. Lett. 82, 281–283 (2003)

    Article  Google Scholar 

  31. J. Huang, Y. Cao, M. Wang, C. Huang, Z. Deng, H. Tong, Z. Liu, J. Phys. Chem. C 114, 14748–14754 (2010)

    Article  Google Scholar 

  32. D.L. Morgan, G. Triani, M.G. Blackford, N.A. Raftery, R.L. Frost, E.R. Waclawik, J. Mater. Sci. 46, 548–557 (2011)

    Article  Google Scholar 

  33. T. Kasuga, Thin Solid Films 496, 141–145 (2006)

    Article  Google Scholar 

  34. D.V. Bavykin, M. Carravetta, A.N. Kulak, F.C. Walsh, Chem. Mater. 22, 2458–2465 (2010)

    Article  Google Scholar 

  35. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370–3377 (2004)

    Article  Google Scholar 

  36. A. Elsanousi, E.M. Elssfah, J. Zhang, J. Lin, H.S. Song, C. Tang, J. Phys. Chem. C 111, 14353–14357 (2007)

    Article  Google Scholar 

  37. J. Sheng, L. Hu, L.E. Mo, W. Li, H. Tian, S. Dai, Sci. China Chem. 55, 368–372 (2012)

    Article  Google Scholar 

  38. M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, M. Graetzel, Chem. Mater. 17, 1248–1255 (2005)

    Article  Google Scholar 

  39. Q. Wang, Z. Wen, J. Li, Inorg. Chem. 45, 6944–6949 (2006)

    Article  Google Scholar 

  40. Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo, R. Zeng, RSC Adv. 1, 1834–1840 (2011)

    Article  Google Scholar 

  41. Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Angew. Chem. Int. Ed. 51, 2164–2167 (2012)

    Article  Google Scholar 

  42. R. Grosjean, M. Fehse, S. Pigeot-Remy, L. Stievano, L. Monconduit, S. Cassaignon, J. Power Sources 278, 1–8 (2015)

    Article  Google Scholar 

  43. P. Zheng, T. Liu, Y. Su, L. Zhang, S. Guo, Sci. Rep. 6, 36580 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratefulness to the Project SEP-CONACYT CB-2012-01 #189865. This work was also supported by PAICYT-UANL program through project number IT468-15. The authors also acknowledge Alberto Toxqui Terán (CIMAV Monterrey), Francisco Enrique Longoria (CIMAV Monterrey), J. Alejandro Arizpe Zapata (CIMAV Monterrey) and Departamento Ecomateriales y Energía (FIC-UANL) for their help with TGA–DTA, XRD, RAMAN/TEM and BET measurements, respectively. Special thanks to Arturo Rodríguez Rodríguez and Pedro Luis Córdoba Osorio for their great help in the laboratory. Also, the support of Raquel Garza with the AAnalyzer® software (deconvolution of Raman peaks) is recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Sánchez-Domínguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Aguilar, N., Garza-Tovar, L.L., Sánchez-Cervantes, E.M. et al. Preparation of TiO2–(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance. J Mater Sci: Mater Electron 29, 15464–15479 (2018). https://doi.org/10.1007/s10854-018-9085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9085-1

Navigation