Skip to main content
Log in

Controllable synthesis and formation mechanism of 3D flower-like TiO2 microspheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high recombination rate of electrons and holes has been one of the important reasons for limiting photocatalytic efficiency. In order to improve the photocatalytic performance, the reduction of the recombination probability can be achieved by regulating the morphology of the microspheres. 3D flower-like TiO2 microspheres were successfully prepared by a one-step hydrothermal method using tetrabutyl titanate (TBT) as titanium source, glacial acetic acid (HAc) as solvent and capping agent. The TiO2 microspheres were analyzed by XRD, SEM, and N2 adsorption–desorption isotherm for structure and morphology characterization. The results show that the samples were self-assembled by nanosheets to form the anatase TiO2 microspheres with mesoporous structure and the surface area of TiO2 can reach 356 m2/g. As the heat treatment temperature increases, the nanosheets were destroyed. The methylene orange (MO) was degraded 99% in 2 h, and the catalyst could be reused many times over. The formation mechanism of flower-like TiO2 microspheres was discussed in detail based on the above investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Elsanousi, N. Elamin, S. Elhouri, Highly ordered TiO2 nanotubes and their application to dye sensitized solar cells. J. Appl. Ind. Sci. 1, 39–42 (2013)

    CAS  Google Scholar 

  2. P.V. Viet, B.T. Phan, V. Hieu le, C.M. Thi, The effect of acid treatment and reactive temperature on the formation of TiO2 nanotubes. J. Nanosci. Nanotechnol. 15, 5202–5206 (2015)

    Article  CAS  Google Scholar 

  3. B. Gao, X. Luo, H. Fu, Y. Chen, B. Lin, Z. Gu, Facile synthesis of TiO2 microspheres with reactive (001) facets for improved photocatalytic performance. J. Nanosci. Nanotechnol. 14, 3969–3975 (2014)

    Article  CAS  Google Scholar 

  4. X. Jiang, Y. Zhang, Z. Li, Y. Ren, M. Zhang, G. He, X. Song, Z. Sun, Microstructure, optical and photoelectron-chemical properties of TiO2 microspheres prepared by hydrothermal method. J. Mater. Sci.: Mater. Electron. 26, 2070–2075 (2014)

    Google Scholar 

  5. C.J. Lin, W.T. Yang, C.Y. Chou, S.Y. Liou, Hollow mesoporous TiO2 microspheres for enhanced photocatalytic degradation of acetaminophen in water. Chemosphere 152, 490–495 (2016)

    Article  CAS  Google Scholar 

  6. D. Zhong, Q.K. Jiang, B.K. Huang, W.H. Zhang, C. Li, Synthesis and characterization of anatase TiO2 nanosheet arrays on FTO substrate. J. Energy Chem. 24, 626–631 (2015)

    Article  Google Scholar 

  7. L. Yang, Q.H. Zhang, W.H. Wang, S.B. Ma, M. Zhang, J.G. Lv, G. He, Z.Q. Sun, Tuning the photoelectronic and photocatalytic properties of single-crystalline TiO2 nanosheet array films with dominant {001} facets by controlling the hydrochloric acid concentration. J. Mater. Sci. 51, 950–957 (2015)

    Article  Google Scholar 

  8. B.X. Lei, X.F. Zheng, H.K. Qiao, Y. Li, S.N. Wang, G.L. Huang, Z.F. Sun, A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells. Electrochim. Acta 149, 264–270 (2014)

    Article  CAS  Google Scholar 

  9. K. Kuroda, K. Chuzo, The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 63, 988–992 (1990)

    Article  Google Scholar 

  10. D.M. Antonelli, J.Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew. Chem. Int. Ed. 34, 2014–2017 (1995)

    Article  CAS  Google Scholar 

  11. Y. Zhang, S. Yang, Y. Guan, W. Cao, J. Xu, Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly. Macromolecules 36, 4238–4240 (2003)

    Article  CAS  Google Scholar 

  12. J.Y. Liao, B.X. Lei, D.B. Kuang, C.Y. Su, Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy Environ. Sci. 4, 4079–4085 (2011)

    Article  CAS  Google Scholar 

  13. J. Jiang, Y. Guo, X. Han, N. Liang, Preparation and photocatalytic property of hierarchical TiO2 microsphere. New Chem. Mater. 42, 74–76 (2014)

    CAS  Google Scholar 

  14. Y.P. Que, J. Weng, L.H. Hu, J.H. Wu, S.Y. Dai, High open voltage and superior light-harvesting dye-sensitized solar cells fabricated by flower-like hierarchical TiO2 composed with highly crystalline nanosheets. J. Power Sources 307, 138–145 (2016)

    Article  CAS  Google Scholar 

  15. Y. Shi, Y.L. Yang, G.H. Dong, Y.X. Jiang, L.G. Wei, T. Su, R.Q. Fan, Three-dimensional flower-like rutile TiO2 microsphere composed of nanorods: a potential material as light scattering layer for DSSCs. Chem. Res. Chin. Univ. 33, 298–304 (2017)

    Article  CAS  Google Scholar 

  16. W.Q. Wu, Y.F. Xu, H.S. Rao, C.Y. Su, D.B. Kuang, Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 136, 6437–6445 (2014)

    Article  CAS  Google Scholar 

  17. J. Jitputti, S. Pavasupree, Y. Suzuki, S. Yoshikawa, Fabrication of size-controllable flower-like TiO2 and its photocatalytic activity. ECS Trans. 16, 3–9 (2009)

    Article  CAS  Google Scholar 

  18. N.S. Chaudhari, S.S. Warule, S.A. Dhanmane, M.V. Kulkarni, M. Valant, B.B. Kale, Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S. Nanoscale 5, 9383–9390 (2013)

    Article  CAS  Google Scholar 

  19. G. Xiang, D. Wu, J. He, X. Wang, Acquired pH-responsive and reversible enrichment of organic dyes by peroxide modified ultrathin TiO2 nanosheets. Chem. Commun. 47, 11456–11458 (2011)

    Article  CAS  Google Scholar 

  20. T.J. Zhu, J. Li, Q.S. Wu, Construction of TiO2 hierarchical nanostructures from nanocrystals and their photocatalytic properties. ACS Appl. Mater. Interfaces 3, 3448–3453 (2011)

    Article  CAS  Google Scholar 

  21. T.A. Arun, D.K. Chacko, A.A. Madhavan, T.G. Deepak, G.S. Anjusree, T. Sara, S. Ramakrishna, S.V. Nair, A.S. Nair, Flower-shaped anatase TiO2 mesostructures with excellent photocatalytic properties. RSC Adv. 4, 1421–1424 (2014)

    Article  CAS  Google Scholar 

  22. B.P. Bastakoti, Y. Sakka, K.C.W. Wu, Y. Yamauchi, Synthesis of highly photocatalytic TiO2 microflowers based on solvothermal approach using N,N-dimethylformamide. J. Nanosci. Nanotechnol. 15, 4747–4751 (2015)

    Article  CAS  Google Scholar 

  23. J. Ma, S.T. Yao, P.F. Cheng, S.S. Du, Y.F. Sun, F.M. Liu, G.Y. Lu, Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells. Chem. Res. Chin. Univ. 31, 841–845 (2015)

    Article  CAS  Google Scholar 

  24. L. Zhao, C. Zhong, Y.L. Wang, S.M. Wang, B.H. Dong, L. Wan, Ag nanoparticle-decorated 3D flower-like TiO2 hierarchical microstructures composed of ultrathin nanosheets and enhanced photoelectrical conversion properties in dye-sensitized solar cells. J. Power Sources 292, 49–57 (2015)

    Article  CAS  Google Scholar 

  25. D.H. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907–914 (2009)

    Article  CAS  Google Scholar 

  26. J. Li, W. Wan, F. Zhu, Q. Li, H. Zhou, J. Li, D. Xu, Nanotube-based hierarchical titanate microspheres: an improved anode structure for Li-ion batteries. Chem. Commun. 48, 389–391 (2012)

    Article  CAS  Google Scholar 

  27. J.Y. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao, Z. Chen, Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 13, 5467–5473 (2013)

    Article  CAS  Google Scholar 

  28. S. Zhang, Q. Li, C. An, K. Li, H. Zhang, Y. Pan, J. Zheng, Preparation and photocatalysis of TiO2 flower-like nanostructures. Chem. Reag. 36, 243–247 (2014)

    CAS  Google Scholar 

  29. H. Wang, X. Li, C. Wu, H. Shi, Synthesis and photocatalytic properties of flower-like TiO2. J. Synth. Cryst. 45, 2478–2482 (2016)

    CAS  Google Scholar 

  30. Y. Bao, T.T. Lim, Z. Zhong, R. Wang, X. Hu, Acetic acid-assisted fabrication of hierarchical flower-like Bi2O3 for photocatalytic degradation of sulfamethoxazole and rhodamine B under solar irradiation. J. Colloid Interface Sci. 505, 489–499 (2017)

    Article  CAS  Google Scholar 

  31. Q.Y. Wang, Q.Q. Yuan, Z.Y. Liu, R.C. Jin, Y.M. Cui, S.M. Gao, Ultrasound-assisted synthesis and solar-light-driven photoelectrocatalytic activity of CdS sensitized TiO2 nanotube array photocatalysts. Sep. Purif. Technol. 194, 216–221 (2018)

    Article  CAS  Google Scholar 

  32. X.C. Kong, Y.M. Xu, Z.C. Cui, Z.Y. Li, Y.Q. Liang, Z.H. Gao, S.L. Zhu, X.J. Yang, Defect enhances photocatalytic activity of ultrathin TiO2 (B) nanosheets for hydrogen production by plasma engraving method. Appl. Catal. B 230, 11–17 (2018)

    Article  CAS  Google Scholar 

  33. Z.F. Bian, J. Zhu, H.X. Li, Solvothermal alcoholysis synthesis of hierarchical TiO2 with enhanced activity in environmental and energy photocatalysis. J. Photochem. Photobiol. C 28, 72–86 (2016)

    Article  CAS  Google Scholar 

  34. C. Zhang, D. Huang, M. Sun, Y. Ouyang, C. Wang, X. Li, L. Chen, B. Su, Promoting effect of nonmetal ion doping and hierarchically 3D dendrimeric architecture for visible-light-active mesoporous TiO2 photocatalyst. Chem. J. Chin. Univ. 38, 471–478 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Science Funds of Tianjin for Distinguished Young Scholar (Grant No. 17JCJQJC44800) and Natural Science Foundation of Tianjin City (Grant No. 16JCYBJC17900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei E.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., E, L., Zhao, D. et al. Controllable synthesis and formation mechanism of 3D flower-like TiO2 microspheres. J Mater Sci: Mater Electron 29, 10277–10283 (2018). https://doi.org/10.1007/s10854-018-9081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9081-5

Navigation