Synthesis and luminescent properties of a novel red emitting La2Mo3O12: Li+, Eu3+ phosphor

  • Chao Song
  • Qiang Ren
  • Juhong Miao
  • Qiling Hong
  • Weifeng Rao


La2Mo3O12: Eu3+ (5 mol%) red phosphors co-doped with different concentrations of Li+ ions have been synthesized by a citric acid based sol–gel method. X-ray powder diffraction, field emission scanning electron microscope, photoluminescence (PL) spectra and luminescence decay kinetics were used to characterize the synthesized samples. The results show that the excitation spectra of La2Mo3O12: Li+, Eu3+ phosphors consist of a broad and strong absorption band in the ultraviolet (UV) and near ultraviolet (NUV) regions, which can be efficiently excited by the NUV light. The emission spectra of the phosphors exhibit characteristic luminescence 5D07F J (J = 1, 2, 3, 4) of the Eu3+ ions with a dominant electronic transition located at 615 nm (5D07F2). Incorporation of Li+ ions in La2Mo3O12: Eu3+ lattice can induce a remarkable improvement of their PL intensity and the optimal concentration of Li+ is 15 mol%. Furthermore, the estimated chromaticity coordinate about (0.65, 0.34) is very close to the ideal red light (0.670, 0.330). These results indicate that the Li+ doped La2Mo3O12: Eu3+ phosphors can serve as NUV excited red phosphors for white light emitting diodes.



This work was supported by the grants of Specially-Appointed Professor of Jiangsu and the National Science Foundation of China under Grant Nos. 11474167 and 51502142. It is also sponsored by National Training Program for Undergraduate on Innovation of Jiangsu Province (201610300067).


  1. 1.
    Y. Narukawa, Opt. Photonics News 15, 24–29 (2004)CrossRefGoogle Scholar
  2. 2.
    E.F. Schubert, J.K. Kim, Science 308, 1274–1278 (2005)CrossRefGoogle Scholar
  3. 3.
    C.C. Lin, R.-S. Liu, J. Phys. Chem. Lett. 2, 1268–1277 (2011)CrossRefGoogle Scholar
  4. 4.
    H.M. Zhu, C.C. Lin, W.Q. Luo, S.T. Shu, Z.G. Liu, Y.S. Liu, J.T. Kong, E. Ma, Y.G. Cao, R.S. Liu, X.Y. Chen, Nat. Commun. 5, 4312–4322 (2014)CrossRefGoogle Scholar
  5. 5.
    P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.K. Henss, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891–896 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Neeraj, N. Kijima, A.K. Cheetham, Chem. Phys. Lett. 387, 2 (2004)CrossRefGoogle Scholar
  7. 7.
    T. Nishida, T. Ban, N. Kobayashi, Appl. Phys. Lett. 82, 3817 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Kuang, Y. Liu, D. Yuan, Electrochem. Solid-State Lett. 8, H72 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Liu, X. Wang, Z. Zhang, X. Chen, Ceram. Int. 38, 6349–6352 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Ano, N. Ogata, Y. Miyaro, J. Catal. 161, 78 (1996)CrossRefGoogle Scholar
  11. 11.
    L.X. Pang, G.B. Sun, D. Zhou, Mater. Lett. 65, 164–166 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Xu, C.L. Lu, Z.H. Zhang, X.Y. Yang, W.H. Hou, Nanoscale 2, 995 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Zhou, X.H. He, B. Yan, Opt. Mater. 36, 602–607 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Thomas, D. Alexander, S. Sisira, P.R. Biju, N.V. Unnikrishnan, M.A. Ittyachen, C. Joseph, J. Mater. Sci.: Mater. Electron. 28, 17702–17709 (2017)Google Scholar
  15. 15.
    J. Thirumalai, R. Krishnan, I.B.S. Banu, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 24, 253–259 (2013)Google Scholar
  16. 16.
    Y. Tian, B.J. Chen, R.N. Hua, J.S. Sun, L.H. Chen, H.Y. Zhong, X.P. Li, J.S. Zhang, Y.F. Zheng, T.T. Yu, L.B. Huang, H.Q. Yu, J. Appl. Phys. 109, 53511 (2011)CrossRefGoogle Scholar
  17. 17.
    L.K. Bharat, V.R. Bandi, J.S. Yu, Chem. Eng. J. 255, 205–213 (2014)CrossRefGoogle Scholar
  18. 18.
    N. Yabuuchi, Y. Tahara, S. Komaba, S. Kitada, Y. Kajiya, Chem. Mater. 28, 416–419 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Wang, Y. Liu, G.Q. Tian, D.H. Liu, S.Y. Ma, M.Z. Zhao, J. Lumin. 197, 354–359 (2017)CrossRefGoogle Scholar
  20. 20.
    R.D. Shannon, Acta Crystallogr. 32, 751–767 (1976)CrossRefGoogle Scholar
  21. 21.
    G.R. Dillip, P. MohanKumar, B. Deva Prasad Raju, S.J. Dhoble, J. Lumin. 134, 333 (2013)CrossRefGoogle Scholar
  22. 22.
    D. Balaji, A. Durairajan, K.K. Rasu, S.M. Babu, J. Lumin. 146, 458–463 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Jin, H. Wu, L.H. Tian, J. Lumin. 132, 1188–1191 (2012)CrossRefGoogle Scholar
  24. 24.
    M.N. Huang, Y.Y. Ma, X.Y. Huang, S. Ye, Q.Y. Zhang, Spectrochim. Acta A 115, 767–771 (2013)CrossRefGoogle Scholar
  25. 25.
    P. Du, J.S. Yu, Sci. Rep. 7, 11953 (2017)CrossRefGoogle Scholar
  26. 26.
    N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, P.R.S. Chakradhar, J. Alloys Compd. 509, 2368–2374 (2011)CrossRefGoogle Scholar
  27. 27.
    O.A. Lopez, J. McKittrick, L.E. Shea, J. Lumin. 71, 1 (1997)CrossRefGoogle Scholar
  28. 28.
    X.L. Liu, X. Xui, M. Gu, L.H. Xiao, K. Han, R. Zhang, Appl. Surf. Sci. 253, 4344 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chao Song
    • 1
  • Qiang Ren
    • 1
  • Juhong Miao
    • 1
  • Qiling Hong
    • 1
  • Weifeng Rao
    • 1
  1. 1.Department of Materials Physics, IEMM, and Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and OceanNanjing University of Information Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations