Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15452–15457 | Cite as

Morphology, structure and emission of Al-doped ZnO nanocrystal films

  • T. V. Torchynska
  • B. El Filali
  • G. Polupan
  • L. Shcherbyna
  • J. L. Casas Espinola


The morphology, structure and emission of Al-doped ZnO nanocrystals (NCs) with the different Al contents (1–4 at.%) were studied by means of the scanning electronic microscopy, energy dispersive X ray spectroscopy, X-ray diffraction and photoluminescence (PL) methods. Ultrasonic spray pyrolysis was applied to obtain the ZnO:Al films. To stimulate the crystallization, the ZnO:Al films were annealed at 400 °C for 4 h in a constant nitrogen flow (8 L/min). It is shown that the Al incorporation in the ZnO films with the concentrations of 2–4 at.% stimulates: the reduction of ZnO:Al grain sizes, decreasing the film crystallinity owing to disordering the ZnO:Al crystal lattice, the change of the surface morphology and increasing the surface roughness. Meanwhile, Al-doping the ZnO films at the concentrations ≤ 2 at.% enlarge significantly the PL intensity of the near band edge emission. Last fact testifies to quality improving the ZnO:Al films. Simultaneously, the PL intensities of green and orange PL bands, connected with the native defects: VZn and Oi, fall down. The ZnO NC films with Al-doping ≤ 2 at.% still keep the planar surface morphology that is important for their applications in electronic device structures.



The authors thank the Secretary of Investigation and Postgraduate Study at National Polytechnic Institute (Projects 20180495, 20170821, 20170633 and 20170667) and National Council of Science and Technology (CONACYT) of Mexico (Project 258224) for the financial support.


  1. 1.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater Sci. 50, 293 (2005)CrossRefGoogle Scholar
  2. 2.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  3. 3.
    D.-J. Yun, S.-W. Rhee, Thin Solid Films 517, 4644 (2009)CrossRefGoogle Scholar
  4. 4.
    X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875 (2003)CrossRefGoogle Scholar
  5. 5.
    H. Saarenpaa, T. Niem, A. Tukiainen, H. Lemmetyinen, N. Tkachenko, Sol. Energy Mater. Sol. Cells 94, 1379 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Boltasseva, H.A. Atwater, Science 331, 290 (2011)CrossRefGoogle Scholar
  7. 7.
    A. El Manounia, F.J. Manjón, M. Mollar, B. Marí, R. Gómez, M.C. López, J.R. Ramos-Barrado, Superlattices Microstruct. 39, 185 (2006)CrossRefGoogle Scholar
  8. 8.
    X. Zi-quiang, D. Hong, L. Yan, Ch. Hang, Mater. Sci. Semicond. Process. 9, 132 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Bazzani, A. Neroni, A. Calzolari, A. Catellani, Appl. Phys. Lett. 98, 121907 (2011)CrossRefGoogle Scholar
  10. 10.
    I. Valenti, S. Benedetti, A. di Bona, V. Lollobrigida, A. Perucchi, P. Di Pietro, S. Lupi, S. Valeri, P. Torelli, Appl. Phys. 118, 165304 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Li, Y. Adachi, J. Li, H. Okushi, I. Sakaguchi, S. Ueda, H. Yoshikawa, Y. Yamashita, S. Senju, K. Kobayashi, M. Sumiya, H. Haneda, N. Ohashi, Appl. Phys. Lett. 98, 082101 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Lany, A. Zunger, Phys. Rev. Lett. 98, 045501 (2007)CrossRefGoogle Scholar
  13. 13.
    P. Kadam, Ch. Agashe, Sh. Mahamuni, J. Appl. Phys. 104, 103501 (2008)CrossRefGoogle Scholar
  14. 14.
    J.J. Ding, S.Y. Ma, H.X. Chen, X.F. Shi, T.T. Zhou, L.M. Mao, Physica B 404, 2439 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Nayak, S. Kimura, S. Nozaki, J. Lumin. 129, 12 (2009)CrossRefGoogle Scholar
  16. 16.
    O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean, Sol. Energy Mater. Sol. Cells 93, 1417 (2009)CrossRefGoogle Scholar
  17. 17.
    E. Velázquez Lozada, T.V. Torchynska, J.L. Casas Espinola, B. Pérez Millan, Physica B 453, 111 (2014)CrossRefGoogle Scholar
  18. 18.
    T.V. Torchynska, L. Khomenkova, N.E. Korsunska, B. Dzumaev, J. Phys. Chem. Solids 61, 937 (2000)CrossRefGoogle Scholar
  19. 19.
    M. Kumara, B. Singh, P. Yadav, V. Bhatt, M. Kumar, K. Singh, A.C. Abhyankar, A. Kumar, J.-H. Yun, Ceram. Int. 43, 3562 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Qiu, X. Li, W. He, S.-J. Park, H.-K. Kim, Y.-H. Hwang, J.-H. Lee, Y.-D. Kim, Nanotechnology 20, 155603 (2009)CrossRefGoogle Scholar
  21. 21.
    X. Liu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95(6), 3141 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Janotti, Ch.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  23. 23.
    T.V. Torchynska, B. El Filali, J. Lumin. 149, 54 (2014)CrossRefGoogle Scholar
  24. 24.
    A.I. Diaz Cano, B. El Filali, T.V. Torchynska, J.L. Casas Espinola, Physica E 51, 24 (2013)CrossRefGoogle Scholar
  25. 25.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, T. Goto, Appl. Phys. Lett. 73, 1038 (1998)CrossRefGoogle Scholar
  26. 26.
    T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 76, 3549 (2000)CrossRefGoogle Scholar
  27. 27.
    C.H. Ahn, S.K. Mohanta, N.E. Lee, H.K. Cho, Appl. Phys. Lett. 94, 271904 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalESFMMéxico CityMexico
  2. 2.Instituto Politécnico NacionalUPIITAMéxico CityMexico
  3. 3.Instituto Politécnico NacionalESIMEMéxico CityMexico
  4. 4.V. Lashkaryov Institute of Semiconductor Physics at NASUKyivUkraine

Personalised recommendations