Effect of powders on microstructures and mechanical properties for Sn–Ag transient liquid phase bonding in air

  • Yudian BaoEmail author
  • Aiping Wu
  • Huakai Shao
  • Yue Zhao
  • Guisheng Zou


Transient liquid phase (TLP) bonding is a promising interconnection technology for high-temperature electronic packaging; however, the development is seriously limited by the long bonding time. Mixed powders with different melting points have been employed as interlayer to reduce the bonding time, but some problems still remain, such as void and undesirable property. In this paper, Cu–Cu substrates were bonded by using Sn–Ag mixed powders for a short time in air, and then the mechanism of void formation was studied, followed by a discussion of the effects of Ag/Sn proportion and powder size on the microstructures and mechanical properties of the joint. After bonded at 260 °C for just 10 min, the liquid Sn in solder paste is totally consumed, and the joint has a high shear strength of 39.5 MPa. The Ag/Sn proportion is vital to joint performance. Sn70Ag joint has the highest shear strength of 72.3 MPa, which is much more excellent than those in other studies due to the denser microstructures with fewer voids. The size of SnAgCu powders affects void size in the joint, and the size of Ag powders has a significant effect on the reaction process, suggesting that too large powders are not preferable. Moreover, the oxidation of small Sn powders should be given to sufficient attention. Finally, TLP bonding with mixed powders has an advantage over foil-based TLP bonding in terms of bonding efficiency and mechanical properties, as the bonding time is much shorter and the shear strength is much higher, which is related to the size and distribution of voids.



This research is financially supported by the National Science Foundation of China under Grant No. 51375260, which entitled “Technology and Mechanism of Low Temperature Transient Liquid Phase Bonding”.


  1. 1.
    Y.N. Zhou, Microjoining and Nanojoining, 1st edn. (CRC Press, New York, 2008)CrossRefGoogle Scholar
  2. 2.
    H.A. Mantooth, M.M. Mojarradi, R.W. Johnson, IEEE Power Electron. Soc. Newslett. 18, 9 (2006)Google Scholar
  3. 3.
    R.W. Johnson, C. Wang, Y. Liu, J.D. Scofield, IEEE Trans. Electron. Packag. Manuf. 30, 182 (2007)CrossRefGoogle Scholar
  4. 4.
    V.R. Manikam, K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2001)CrossRefGoogle Scholar
  5. 5.
    V. Chidambaram, J.Hattel,J. Hald, Mater. Des. 31, 4638 (2010)CrossRefGoogle Scholar
  6. 6.
    V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Fan, C.S. Tan, Metall. 4, 71 (2012)Google Scholar
  8. 8.
    H. Alarifi, A. Hu, M. Yavuz, J. Electron. Mater. 40, 1394 (2011)CrossRefGoogle Scholar
  9. 9.
    J.F. Yan, G.S. Zou, A.P. Wu, Scripta Mater. 66, 582 (2012)CrossRefGoogle Scholar
  10. 10.
    W.Y. Sang, M.D. Glover, H.A. Mantooth, K. Shiozaki, J. Micromech. Microeng. 23, 15017 (2012)Google Scholar
  11. 11.
    E. Möller, A.A. Bajwa, E. Rastjagaev, J.Wilde, IEEE Electron. Compon. Technol. Conf. 64, 1707 (2014)Google Scholar
  12. 12.
    A.A. Bajwa, Y. Qin, R. Reiner, R. Quay, IEEE Electron. Compon. Technol. Conf. 64, 2181 (2014)Google Scholar
  13. 13.
    K. Guth, N. Oeschler, L. Boewer, R. Speckels, G. Strotmann, N. Heuck, S. Krasel, Integrat. Power Electron. Syst. 7, 1 (2012)Google Scholar
  14. 14.
    A. Sharif, M.N. Islam, Y.C. Chan, Mater. Sci. Eng. B 113, 184 (2004)CrossRefGoogle Scholar
  15. 15.
    C.E. Ho, S.C. Yang, C.R. Kao, J. Mater. Sci. Mater. Electron. 18, 155 (2007)CrossRefGoogle Scholar
  16. 16.
    N.S. Bosco, F.W. Zok, Acta Metall. 53, 2019 (2005)Google Scholar
  17. 17.
    M.S. Park, S.L. Gibbons, R. Arróyave, Microelectron. Reliab. 54, 1401 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, J. Electron. Mater. 41, 2453 (2012)CrossRefGoogle Scholar
  19. 19.
    C. Hang, Y. Tian, R. Zhang, D.S. Yang, J. Mater. Sci. Mater. Electron. 24, 3905 (2013)CrossRefGoogle Scholar
  20. 20.
    I. Panchenko, J. Grafe, M. Mueller, K.J. Wolter, IEEE Electron. Syst. Integrat. Technol. Conf. 4, 1 (2012)Google Scholar
  21. 21.
    G. Ross, H. Xu, V. Vuorinen, M. Paulasto-Krockel, IEEE Electron. Syst. Integrat. Technol. Conf. 5, 1 (2014)Google Scholar
  22. 22.
    K.E. Aasmundtveit, T.T. Luu, A.S.B. Vardoy, T.A. Tollefsen, IEEE Electron. Syst. Integrat. Technol. Conf. 5, 1 (2014)Google Scholar
  23. 23.
    K. Chu, Y. Sohn, C. Moon, Scripta Mater. 109, 113 (2015)CrossRefGoogle Scholar
  24. 24.
    H.K. Shao, A.P. Wu, Y.D. Bao, Y. Zhao, G.S. Zou, J. Mater. Sci. Mater. Electron. 27, 4839 (2016)CrossRefGoogle Scholar
  25. 25.
    J.J. Yu, C.A. Yang, Y.F. Lin, C.H. Hsueh, C.R. Kao, J. Alloys Compd. 629, 16 (2015)CrossRefGoogle Scholar
  26. 26.
    R.A. Gagliano, M.E. Fine, J. Electron. Mater. 32, 1441 (2003)CrossRefGoogle Scholar
  27. 27.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 59, 1198 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Greve, L.Y. Chen, I. Fox, F.P. McCluskey, IEEE Electron. Compon. Technol. Conf. 63, 435 (2013)Google Scholar
  29. 29.
    H. Greve, S.A. Moeini, F.P. Mccluskey, IEEE Electron. Compon. Technol. Conf. 64, 1314 (2014)Google Scholar
  30. 30.
    X. Liu, S. He, H. Nishikawa, Scripta Mater. 110, 101 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Liu, S. He, H. Nishikawa, J. Alloys Compd. 695, 2165 (2016)CrossRefGoogle Scholar
  32. 32.
    G. Ghosh, J. Mater. Res. 19, 1439 (2004)CrossRefGoogle Scholar
  33. 33.
    P. Fima, Appl. Surf. Sci. 257, 3265 (2011)CrossRefGoogle Scholar
  34. 34.
    A. Sharif, C.L. Gan, Z. Chen, J. Alloys Compd. 587, 365 (2014)CrossRefGoogle Scholar
  35. 35.
    H.P.R. Frederikse, R.J. Fields, A. Feldman, J. Appl. Phys. 72, 2879 (1992)CrossRefGoogle Scholar
  36. 36.
    H.K. Shao, A.P. Wu, Y.D. Bao, Y. Zhao, G.S. Zou, Mater. Sci. Eng. A 680, 221 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.Key Laboratory for Advanced Materials Processing TechnologyMinistry of EducationBeijingChina

Personalised recommendations