Novel and simple process for the photocatalytic reduction of CO2 with ternary Bi2O3–graphene–ZnO nanocomposite

  • Asghar Ali
  • Md Rokon Ud Dowla Biswas
  • Won-Chun Oh
Article
  • 1 Downloads

Abstract

Here, we report the new ternary composite Bi2O3–G–ZnO using ultrasonic techniques as well as X-ray diffraction (XRD), scanning electron microscopy (SEM), high transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV–Visible diffuse-reflectance spectra (DRS) analyses. The prepared photocatalysts were tested for the CO2 photocatalytic reduction in a reactor, and the main detected reaction product is CH3OH. The optimum loading graphene of 8% exhibited the maximum photoactivity, achieving a total CH3OH yield of 7.250 µmol g−1 h−1 after 48 h. This excellent photoreduction activity is due to the positive synergistic relation between the Bi2O3 and the graphene components in our heterogeneous system. The present work provides a novel application regarding the improvement of nanoscale Bi2O3–G–ZnO materials for photocatalytic applications.

References

  1. 1.
    A.A. Lacis, G.A. Schmidt, D. Rind, R.A. Ruedy, Atmospheric CO2: principal control knob governing Earth’s temperature. Science 330, 356 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5, 9217 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Shi, G. Chen, C. Zhang, Z. Zou, Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal. 4, 3637 (2014)CrossRefGoogle Scholar
  4. 4.
    V. Kumar, N. Labhsetwar, S. Meshram, S. Rayalu, Functionalized fly ash based alumino-silicates for capture of carbon dioxide. Energy Fuels 25, 4854 (2011)CrossRefGoogle Scholar
  5. 5.
    T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637 (1979)CrossRefGoogle Scholar
  6. 6.
    B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63, 541 (2012)CrossRefGoogle Scholar
  7. 7.
    S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Wang, X. Wang, Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B 162, 494 (2015)CrossRefGoogle Scholar
  9. 9.
    F.C. Meunier, Mixing copper nanoparticles and ZnO nanocrystals: a route towards understanding the hydrogenation of CO2 to methanol? Angew. Chem. Int. Ed. 50, 4053 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Xu, S. Ouyang, P. Li, T. Kako, J. Ye, High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl. Mater. Interfaces 5, 1348 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.S. Chaudhary, T.W. Woolerton, C.S. Allen, J.H. Warner, E. Pierce, S.W. Ragsdale, F.A. Armstrong, Visible-light-driven CO2 reduction by enzyme coupled CdS nanocrystals. R. Soc. Chem. 48, 58 (2012)Google Scholar
  12. 12.
    P.W. Pan, Y.W. Chen, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light radiation. Catal. Commun. 8, 1546 (2007)CrossRefGoogle Scholar
  13. 13.
    E. Liu, L. Kang, F. Wu, T. Sun, X. Hu, Y. Yang, H. Liu, J. Fan, Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 9, 61 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. J. Colloid Interface Sci. 356, 257 (2011)CrossRefGoogle Scholar
  15. 15.
    C.W. Tsai, H.M. Chen, R.S. Liu, K. Asakura, T.S. Chan, Ni@NiO core-shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J. Phys. Chem. C 115, 10180 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Zhu, B. Lu, Q. Su, E. Xie, W. Lan, A simple method for the preparation of hollow ZnO nanospheres for use as a high-performance photocatalyst. Nanoscale 4, 3060 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563 (2008)CrossRefGoogle Scholar
  19. 19.
    X. Wang, G. Liu, G.Q. Lu, H.M. Cheng, Stable photocatalytic hydrogen evolution from water over ZnO–CdS core-shell nanorods. Int. J. Hydrog. Energy 35, 8199 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Yu, G. Zhang, Y. Gao, B. Huang, Single-crystalline Bi5O7NO3 nanofibers: hydrothermal synthesis, characterization, growth mechanism, and photocatalytic properties. J. Colloid Interface Sci. 354, 322 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, Y. Dai, In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 47, 7054 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, Z. Wang, B. Huang, X. Zhang, X. Qin, Y. Dai, Enhanced photocatalytic degradation of organic pollutants over basic bismuth (III) nitrate/BiVO4 composite. J. Colloid Interface Sci. 348, 211 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. J. Phys. Chem. C 116, 26306 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Cabot, A. Marsal, J. Arbiol, J. Morante, Bi2O3 as a selective sensing material for NO detection. Sens. Actuators B 99, 74 (2004)CrossRefGoogle Scholar
  25. 25.
    H. Fu, C. Pan, W. Yao, Y. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 22432 (2005)CrossRefGoogle Scholar
  26. 26.
    Y. Xu, M.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543 (2000)CrossRefGoogle Scholar
  27. 27.
    A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4−x nanocomposite. J. Am. Chem. Soc. 130, 9658 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Yu, J. Jin, B. Cheng, M. Jaroniec, A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2, 3407 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Reli, P. Huo, M. Šihor, N. Ambrožová, I. Troppová, L. Matějová, J. Lang, L. Svoboda, P. Kuśtrowski, M. Ritz, P. Praus, Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 120(43), 8564–8573 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Ali, W.C. Oh, Preparation of nanowire like WSe2-graphene nanocomposite for photocatalytic reduction of CO2 into CH3OH with the presence of sacrificial agents. Sci. Rep. 7(1), 1867 (2017)CrossRefGoogle Scholar
  31. 31.
    X. Xin, T. Xu, L. Wang, C. Wang, Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. Sci. Rep. 6, 23684 (2016)CrossRefGoogle Scholar
  32. 32.
    M.A. Basyooni, M. Shaban, A.M. El Sayed, Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci. Rep. 7, 41716 (2017)CrossRefGoogle Scholar
  33. 33.
    P.K. Giesbrecht, D.E. Herbert, Electrochemical reduction of carbon dioxide to methanol in the presence of benzannulated dihydropyridine additives. ACS Energy Lett. 2(3), 549 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Cai, M. Song, Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem. 17, 3678 (2007)CrossRefGoogle Scholar
  35. 35.
    J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Appl. Surf. Sci. 256, 2826 (2010)CrossRefGoogle Scholar
  36. 36.
    L. Zhu, M. Teo, P. Wong, K. Wong, I. Narita, F. Ernst, K. Mitchell, S. Campbell, Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction. Appl. Catal. A 386, 157 (2010)CrossRefGoogle Scholar
  37. 37.
    S. Lopez-Romero, Growth and characterization of ZnO cross-like structures by hydrothermal method. Matéria 14, 977 (2009)Google Scholar
  38. 38.
    W. Xiaohong, Q. Wei, H. Weidong, Thin bismuth oxide films prepared through the sol-gel method as photocatalyst. J. Mol. Catal. A 261, 167 (2007)CrossRefGoogle Scholar
  39. 39.
    R. Al-Gaashani, S. Radiman, A. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283 (2013)CrossRefGoogle Scholar
  40. 40.
    T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740 (2006)CrossRefGoogle Scholar
  41. 41.
    H.-K. Jeong, H.-J. Noh, J.-Y. Kim, M. Jin, C. Park, Y. Lee, X-ray absorption spectroscopy of graphite oxide. EPL 82, 67004 (2008)CrossRefGoogle Scholar
  42. 42.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010)CrossRefGoogle Scholar
  43. 43.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403 (2009)CrossRefGoogle Scholar
  44. 44.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010)CrossRefGoogle Scholar
  45. 45.
    L.f. Zhang, C.y. Zhang, Multifunctional Co0.85Se/graphene hybrid nanosheets: controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate. Nanoscale 6, 1782 (2014)CrossRefGoogle Scholar
  46. 46.
    C.H. Ho, C.H. Chan, Y.S. Huang, L.C. Tien, L.C. Chao, The study of optical band edge property of bismuth oxide nanowires α-Bi2O3. Opt. Express 21, 11965 (2013)CrossRefGoogle Scholar
  47. 47.
    S. Yuan, Q. Zhang, B. Xu, Z. Jin, Y. Zhang, Y. Yang, M. Zhang, T. Ohno, Porous cerium dioxide hollow spheres and their photocatalytic performance. RSC Adv. 4, 62255 (2014)CrossRefGoogle Scholar
  48. 48.
    A. Al-Nafiey, B. Sieber, B. Gelloz, A. Addad, M. Moreau, J. Barjon, M. Girleanu, O. Ersen, R. Boukherroub, Enhanced ultraviolet luminescence of ZnO nanorods treated by high-pressure water vapor annealing (HWA). J. Phys. Chem. C 120, 4571 (2016)CrossRefGoogle Scholar
  49. 49.
    H. Li, S. Jiao, H. Li, S. Gao, J. Wang, D. Wang, Q. Yu, Y. Zhang, L. Li, H. Zhou, An interfacial defect-controlled ZnO/PbS QDs/ZnS heterostructure based broadband photodetector. RSC Adv. 6, 74575 (2016)CrossRefGoogle Scholar
  50. 50.
    M. Aslam, M.T. Soomro, I.M. Ismail, H.A. Qari, M. Gondal, A. Hameed, The facile synthesis, characterization and evaluation of photocatalytic activity of bimetallic FeBiO3 in natural sunlight exposure. RSC Adv. 5, 102663 (2015)CrossRefGoogle Scholar
  51. 51.
    S.G. Ullattil, P. Periyat, B. Naufal, M.A. Lazar, Self-doped ZnO microrods—high temperature stable oxygen deficient platforms for solar photocatalysis. Ind. Eng. Chem. Res. 55, 6413 (2016)CrossRefGoogle Scholar
  52. 52.
    S. Boulmelh, L. Saci, F. Mansour, R. Mahamadi, Structural and composition properties of ZnO thin films elaborated by spray pyrolysis. Mater. Res. Proc. 1, 104 (2016)CrossRefGoogle Scholar
  53. 53.
    S.P. Adhikari, H. Dean, Z.D. Hood, R. Peng, K.L. More, I. Ivanov, Z. Wu, A. Lachgar, Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. RSC Adv. 5, 91094 (2015)CrossRefGoogle Scholar
  54. 54.
    Y. Zhang, C. Pan, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 46, 2622 (2011)CrossRefGoogle Scholar
  55. 55.
    P. Zeng, Q. Zhang, T. Peng, X. Zhang, One-pot synthesis of reduced graphene oxide–cadmium sulfide nanocomposite and its photocatalytic hydrogen production. Phys. Chem. Chem. Phys. 13, 21496 (2011)CrossRefGoogle Scholar
  56. 56.
    T. Wang, G. Xiao, C. Li, S. Zhong, F. Zhang, One-step synthesis of a sulfur doped Bi2WO6/Bi2O3 composite with enhanced visible-light photocatalytic activity. Mater. Lett. 138, 81–84 (2015)CrossRefGoogle Scholar
  57. 57.
    A. Kumar, T. Mohanty, Electro-optic modulation induced enhancement in photocatalytic activity of N-doped TiO2 thin films. J. Phys. Chem. C 118, 7130–7138 (2014)CrossRefGoogle Scholar
  58. 58.
    G. He, J. Huang, W. Liu, X. Wang, H. Chen, X. Sun, ZnO–Bi2O3/graphene oxide photocatalyst with high photocatalytic performance under visible light. Mater. Technol. 27, 278 (2012)CrossRefGoogle Scholar
  59. 59.
    R. Vinoth, B. Neppolian, Visible light photocatalysts Bi2O3 with graphene oxide support for the effective degradation of organic compound. Mater. Focus 3, 485 (2014)CrossRefGoogle Scholar
  60. 60.
    H.Y. Jiang, G. Liu, P. Li, D. Hao, X. Meng, T. Wang, J. Lin, J. Ye, Nanorod-like α-Bi2O3: a highly active photocatalyst synthesized using g-C3N4 as a template. RSC Adv. 4, 55062 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Asghar Ali
    • 1
    • 2
  • Md Rokon Ud Dowla Biswas
    • 1
  • Won-Chun Oh
    • 1
  1. 1.Department of Advanced Materials Science & EngineeringHanseo UniversitySeosanSouth Korea
  2. 2.University of ChitralChitralPakistan

Personalised recommendations