Influence of composition ratio on ferroelectric, magnetic and magnetoelectric properties of PMN–PT/CFO composite thin films

  • Ao-pei Wang
  • Ming Feng
  • Wen Wang
  • Hai-bo Li
  • Xue Zhao
  • Hang Xu
  • Hua Ke
  • Yu Zhou


Multiferroic 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3/CoFe2O4 (PMNPT/CFO) composite films have been grown on Pt/Ti/SiO2/Si substrate via sol–gel spin-coating technique. PMN–PT and CFO precursor solutions were mixed before the spin-coating process to optimize the interface interaction. We investigated the influence of the composition ratio and annealing process on the property of the multiferroic PMN–PT/CFO composite films. The films which entirely consist of PMN–PT and CFO phases have a good performance in the ferroelectric, ferromagnetic property and direct magnetoelectric coupling effect when they were annealed at 730 °C and air atmosphere. It was obviously noticed that the composition ratio between PMN–PT and CFO has an effect on the properties of PMN–PT/CFO multiferroic composites.



The authors would like to thank the financial support for this work from National Natural Science Foundation of China (Grant Nos. 51372055, 51621091, 51772126, and 21201078), Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Item Nos. 2015003, 2015003 and 2016010), State Key Laboratory of New Ceramic and Fine Processing of Tsinghua University (Item No. KF201505), Program for the Development of Science and Technology of Jilin Province (Item No. 20170101062JC), and the 13th Five-Year Program for Science and Technology of Education Department of Jilin Province (Item No. JJKH20170370KJ).


  1. 1.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)CrossRefGoogle Scholar
  2. 2.
    J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062–1087 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Feng, J.J. Wang, J.M. Hu, J. Wang, J. Ma, H.B. Li, Y. Shen, Y.H. Lin, L.Q. Chen, C.W. Nan, Appl. Phys. Lett. 106, 072901 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Dash, R.N.P. Choudhary, P.R. Das, A. Kumar, Can. J. Phys. 93, 738–744 (2015)CrossRefGoogle Scholar
  5. 5.
    L.G. Wang, C.M. Zhu, H. Luo, S.L. Yuan, J. Electroceram. 35, 59–67 (2015)CrossRefGoogle Scholar
  6. 6.
    M.J. Miah, M.N.I. Khan, A.K.M.A. Hossain, J. Magn. Magn. Mater. 397, 39–50 (2016)CrossRefGoogle Scholar
  7. 7.
    W.T. Xie, H.Q. Zhou, Q.X. Jiang, H.X. Xu, L.C. Ren, X.F. Luo, L. Qian, J. Mater. Sci.: Mater. Electron. 27, 3839–3844 (2016)Google Scholar
  8. 8.
    J.G. Wu, Z. Fan, D.Q. Xiao, J.G. Zhu, J. Wang, Prog. Mater. Sci. 84, 335–402 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Veerannan, A. Arockiarajan, Sens. Actuators A 236, 380–393 (2015)CrossRefGoogle Scholar
  10. 10.
    C.P. Fernández, F.L. Zabotto, D. Garcia, R.H.G.A. Kiminami, Ceram. Int. 42, 3239–3249 (2016)CrossRefGoogle Scholar
  11. 11.
    C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900–2918 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 16046 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Sundararaj, G. Chandrasekaran, H.A. Therese, K. Annamalai, Nanotechnology 26, 315704 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Feng, J.M. Hu, J.J. Wang, Z. Li, L. Shu, C.W. Nan, Appl. Phys. Lett. 19, 192903 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Kumar, D. Barrionuevo, N. Ortega, A.K. Shukla, S. Shannigrahi, J.F. Scott, R.S. Katiyar, J. Appl. Phys. 106, 132901 (2015)Google Scholar
  16. 16.
    S.W. Yang, L. Feng, D.L. Zhang, W.C. Huang, S.N. Dong, J.J. Wang, L.J. Zou, X.G. Li, C.W. Nan, J. Alloys Compd. 646, 472–476 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Gupta, J. Shah, S. Chaudhary, R.K. Kotnala, J. Alloys Compd. 638, 115–120 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Katayama, S. Yasui, Y. Hamasaki, T. Shiraishi, A. Akama, T. Kiguchi, M. Itoh, Adv. Funct. Mater. 28, 1704789 (2017)CrossRefGoogle Scholar
  19. 19.
    N.S. Negi, K. Bala, A. Yadav, R.K. Kotnala, J. Appl. Phys. 117, 164101 (2015)CrossRefGoogle Scholar
  20. 20.
    H.C. Yu, H.Y. Guo, W.M. Zhua, J. Zhuang, W. Ren, Z.G. Ye, Thin Solid Films 585, 82–85 (2015)CrossRefGoogle Scholar
  21. 21.
    F.W. Zhang, F. Yang, C.F. Dong, X.T. Liu, H.L. Nan, Y.Y. Wang, Z.H. Zong, M.H. Tang, J. Electron. Mater. 44, 2348–2352 (2015)CrossRefGoogle Scholar
  22. 22.
    J.W. Kim., C.M. Raghavan, S.S. Kim, J. Sol–Gel. Sci. Technol. 76, 693–698 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Tan, W. Yang, W. Ye, Z.W. Yue, H.J. Ren, A. Xia, J. Mater. Sci. 52, 2694–2704 (2017)CrossRefGoogle Scholar
  24. 24.
    G.H. Dong, G.Q. Tan, Y.Y. Luo, T. Wang, H.J. Ren, A. Xia, J. Alloys Compd. 654, 419–423 (2016)CrossRefGoogle Scholar
  25. 25.
    P.C. Sati, M. Arora, M. Kumar, M. Tomar, V. Gupta, J. Mater. Sci: Mater. Electron. 18, 1011–1014 (2014)Google Scholar
  26. 26.
    J. Li, Y.W. Li, D.P. Zhu, Q.W. Wang, Y. Zhang, Y.D. Zhu, M.Y. Li, J. Alloys Compd. 661, 38–42 (2016)CrossRefGoogle Scholar
  27. 27.
    P. Zhang, C. Gao, F. Lv, Y. Wei, Appl. Phys. Lett. 105, 152904 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Roy, S.B. Majumder, J. Alloys Compd. 538, 153–159 (2012)CrossRefGoogle Scholar
  29. 29.
    S.E. Park, T.R. Shrout, IEEE. Trans. Ultrason. Ferroelectr. 44, 1140–1147 (1997)CrossRefGoogle Scholar
  30. 30.
    B. Zhu, C.T. Yang, Q.T. Xie, Y.L. Zhang, P. Li, Ferroelectrics 445, 18–25 (2013)CrossRefGoogle Scholar
  31. 31.
    D. Zhou, R. Takahashi, Y. Zhou, D. Kim, V.K. Suresh, Y.H. Chu, Q. He, P. Munroe, M. Lippmaa, J. Seidel, N. Valanoor, Adv. Electron. Mater. 3, 1600295 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Shi, R.Z. Zuo, Y.D. Xu, Y.Z. Jiang, G.Y. Yu, H.L. Su, J.G. Zhong, J. Alloys Compd. 512, 165–170 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Feng, W. Wang, H. Ke, J.C. Rao, Y. Zhou, J. Alloys Compd. 495, 154–157 (2010)CrossRefGoogle Scholar
  34. 34.
    W. Rao, Y.B. Wang, Y.A. Wang, J.X. Gao, W.L. Zhou, J. Yu, J. Mater. Sci.: Mater. Electron. 24, 4192–4196 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced Ceramics, Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations