Advertisement

Structural, optical and magnetic properties of Fe-doped CeO2 samples probed using X-ray photoelectron spectroscopy

  • Swati Soni
  • V. S. Vats
  • Sudhish Kumar
  • B. Dalela
  • Monu Mishra
  • R. S. Meena
  • Govind Gupta
  • P. A. Alvi
  • S. Dalela
Article
  • 154 Downloads

Abstract

The present study reports the effect of Fe-doping on the structural, optical, magnetic and electronic properties of polycrystalline CeO2 (for 5 and 10% doping concentration of Fe-cation) samples synthesized by low-temperature solid-state reaction method. Rietveld refinement of the X-ray diffraction patterns establishes fluorite-type face-centred cubic structure of the Fe-doped CeO2 samples and also confirms successful incorporation of Fe ions in the CeO2 lattice. The UV–Vis–NIR absorption spectra displays reduce band gap energy with rising fluency of Fe-ions, which confirm red shifts in the Fe-doped CeO2 samples. The electronic structure of the pure CeO2 and Fe-doped CeO2 polycrystalline samples have been investigated by X-ray photoemission spectroscopy (XPS). The XPS spectra of Ce 3d reveals the reduction of Ce4+ to Ce3+ states Fe-doped CeO2 samples, which are well supported by the Fe 2p and O 1s spectra. Pure polycrystalline CeO2 displays diamagnetic behaviour at room temperature. Interestingly, 5% Fe-doped CeO2 sample displays S-shape hysteresis loop and establishes room temperature ferromagnetism, whereas, 10% Fe-doped CeO2 sample shows weak ferromagnetic behaviour. A decrement is observed in the magnetization on increasing the doping concentration. The possible reason for ferromagnetism in the Fe-doped CeO2 samples may be incorporation of oxygen vacancies, which are further discussed using F-centre exchange mechanism and double exchange interaction. These experimental findings offer potential opportunities for spintronics and optoelectronics applications by integrating them into device structures and evaluating their performance as a function of their material properties.

Notes

Acknowledgements

One of the authors (Swati Soni) is thankful to Department of Science and Technology (DST), New Delhi for financial assistance vide grant no. F.No.SR/WOS-A/PM-1021/2015. Authors are also thankful to Banasthali Vidyapith, Niwai, Rajasthan, for extending the experimental facilities of ‘‘Banasthali Centre for Education and Research in Basic Sciences” sanctioned under CURIE programme of the Department of Science and Technology, New Delhi.

References

  1. 1.
    S. Kumar, G.W. Kim, B.H. Koo, S.K. Sharma, M. Knobel, C.G. Lee, Structural and magnetic study of a diluted magnetic semiconductor: Fe-doped CeO2 nanoparticles. J. Nanosci. Nanotechnol. 11, 555–559 (2011)CrossRefGoogle Scholar
  2. 2.
    K. Srinivas, M. Vithal, B. Sreedhar, M. Manivel Raja, P. Venugopal Reddy, Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors. J. Phys. Chem. C 113, 3543–3552 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, E.D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287(5455), 1019–1022 (2000)CrossRefGoogle Scholar
  4. 4.
    K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988 (2001)CrossRefGoogle Scholar
  5. 5.
    K.C. Verma, R.K. Kotnala, Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering. J. Solid State Chem. 237, 211–218 (2016)CrossRefGoogle Scholar
  6. 6.
    K.C. Verma, R.K. Kotnala, Realizing ferromagnetic ordering in SnO2 and ZnO nanostructures with Fe, Co, Ce ions. Phys. Chem. Chem. Phys. 18(26), 17565–17574 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Kaushik, B. Dalela, R. Rathore, V.S. Vats, B.L. Choudhary, P.A. Alvi, S. Kumar, S. Dalela, Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd. 578, 328–335 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fujii, Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D 47, 235304 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Kaushik, S. Dalela, P.A. Kumar, S. Alvi, Dalela, Role of Co doping on structural, optical and magnetic properties of TiO2. J. Alloys Compd. 552, 274–278 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Yan, S. Ge, W. Qiao, Y. Zuo, F. Xu, Li, Xi, Control of ferromagnetism in Fe-doped In2O3 by carbothermal annealing. J. Magn. Magn. Mater. 323, 264–267 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Jing, X. Qinglin, L. Jinmin, Ferromagnetism in Fe-doped CuO nanopowder. J. Semicond. 33, 013001 (2012)CrossRefGoogle Scholar
  12. 12.
    S.K. Sharma, P. Thakur, S. Kumar, D.K. Shukla, N.B. Brookes, C.G. Lee, K.R. Pirota, B.H. Koo, M. Knobel, Room temperature ferromagnetism in Fe-doped CeO2 thin films grown on LaAlO3 (001). Thin Solid Films 519, 410–413 (2010)CrossRefGoogle Scholar
  13. 13.
    F. Vaja Dumitru, O. Oprea, D. Ficai, A. Ficai, C. Guran, Synthesis of CeO2 nanoparticles on the mesoporous Silica support via nanocasting. Dig. J. Nanomater. Biostruct. 9, 187–195 (2014)Google Scholar
  14. 14.
    M. Dudek, Ceramic electrolytes in the CeO2-Gd2O3-SrO system—preparation, properties and application for solid oxide fuel cells. Int. J. Electrochem. Sci. 7, 2874–2889 (2012)Google Scholar
  15. 15.
    M.C. Dimri, H. Khanduri, H. Kooskora, J. Subbi, I. Heinmaa, A. Mere, J. Krustok, R. Stern, Ferromagnetism in rare earth doped cerium oxide bulk samples. Phys. Status Solidi A 209, 1–6 (2011)Google Scholar
  16. 16.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Physical Review B 74, 161306 (R) (2006)CrossRefGoogle Scholar
  17. 17.
    P.C.A. Brito, D.A.A. Santos, J.G.S. Duque, M.A. Macedo, Structural and magnetic study of Fe-doped CeO2. Physica B 405, 1821–1825 (2010)CrossRefGoogle Scholar
  18. 18.
    J.M.A. Almeida, P.E.C. Santos, L.P. Cardoso, C.T. Meneses, A simple method to obtain Fe-doped CeO2 nanocrystals at room temperature. J. Magn. Magn. Mater. 327, 185–188 (2013)CrossRefGoogle Scholar
  19. 19.
    R.M. Rakhmatullin, V.V. Pavlov, V.V. Semashko, EPR study of nanocrystalline CeO2 exhibiting ferromagnetism at room temperature. Phys. Status Solidi B 253, 1–5 (2015)Google Scholar
  20. 20.
    S. Phokha, D. Prabhakaran, A. Boothroyd, S. Pinitsoontorn, S. Maensiri, Ferromagnetic induced in Cr-doped CeO2 particles. Microelectron. Eng. 126, 93–98 (2014)CrossRefGoogle Scholar
  21. 21.
    W. Qi-Ye, Z. Huai-Wu, Y. Qing-Hui, L. Sheng, X. De-Gang, Y. Jian-Quan, Fe-doped polycrystalline ceo2 as terahertz optical material. Chin. Phys. Lett. 26(4), 047803 (2009)CrossRefGoogle Scholar
  22. 22.
    S.K. Sharma, M. Knobel, C.T. Meneses, S. Kumar, Y.J. Kim, B.H. Koo, C.G. Lee, D.K. Shukla, R. Kumar, Ferromagnetic properties of bulk Fe-doped CeO2 dilute magnetic semiconductors. J. Korean Phys. Soc. 55(3), 1018–1021 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Phokha, S. Pinitsoontorn, S. Maensiri, Structure and magnetic properties of monodisperse Fe3+-doped CeO2 nanospheres. Nano-Micro Lett. 5(4), 223–233 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: effect of varying the nature of precursor. Physica E 97, 328–334 (2018)CrossRefGoogle Scholar
  25. 25.
    R.K. Hailstone, A.G. DiFrancesco, J.G. Leong, T.D. Allston, K.J. Reed, A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. J. Phys. Chem. C 113, 15155–15159 (2009)CrossRefGoogle Scholar
  26. 26.
    F. Zhang, P. Wang, J. Koberstein, S. Khalid, S.-W. Chan, Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563, 74–82 (2004)CrossRefGoogle Scholar
  27. 27.
    R.K. Singhal, S. Kumar, A. Samariya, M. Dhawan, S.C. Sharma, Y.T. Xing, Investigating the mechanism of ferromagnetic exchange interaction in non-doped CeO2 with regard to defects and electronic structure. Mater. Chem. Phys. 132, 534–539 (2012)CrossRefGoogle Scholar
  28. 28.
    E. Beche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008)CrossRefGoogle Scholar
  29. 29.
    A.Q. Wang, T.D. Golden, Anodic electrodeposition of cerium oxide thin films, I. formation of crystalline thin films. J. Electrochem. Soc. 150, C616-C620 (2003)Google Scholar
  30. 30.
    R. Suresh, V. Ponnuswamy, R. Mariappan, Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl. Surf. Sci. 273, 457–464 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Sonsupap, P. Kidkhunthod, N. Chanlek, S. Pinitsoontorn, S. Maensiria, Fabrication, structure, and magnetic properties of electrospun Ce0.96Fe0.04O2 nanofibers. Appl. Surf. Sci. 380, 16–22 (2016)CrossRefGoogle Scholar
  32. 32.
    R. Lubna, B. Shah, H. Ali, W.G. Zhu, Y.Q. Wang, H.W. Song, S.I. Zhang, J.Q. Shah, Xiao, Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co–CeO2. J. Phys.: Condens. Matter. 21, 486004 (2009)Google Scholar
  33. 33.
    S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Leea, M.H. Cho, Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv. 4, 16782 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 4596 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Caglar, F. Yakuphanoglu, Structural and optical properties of copper doped ZnO films derived by sol–gel. Appl. Surf. Sci. 258, 3039–3044 (2012)CrossRefGoogle Scholar
  36. 36.
    T.C. Lin, G. Seshadri, J.A. Kelber, A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl. Surf. Sci. 119, 83–92 (1997)CrossRefGoogle Scholar
  37. 37.
    T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)CrossRefGoogle Scholar
  38. 38.
    A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574 (2004)CrossRefGoogle Scholar
  39. 39.
    E.K. Goharshadi, S. Samiee, P. Nancarrow, Fabrication of cerium oxide nanoparticles: Characterization and optical properties. J. Colloid Interface Sci. 356, 473–480 (2011)CrossRefGoogle Scholar
  40. 40.
    A.A. Ansari, Optical and structural properties of sol–gel derived nanostructured CeO2 film. J. Semicond. 31(5), 053001 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. J. Mol. Struct. 1148, 276–281 (2017)CrossRefGoogle Scholar
  42. 42.
    P. Nagaraju, Y. Vijaya Kumar, M.V. Ramana Reddy, C. Vishnuvardhan Reddy, V. Raghavendra Reddy, D.M. Phase, Indore-India UGC-DAE-CSR, Preparation, Micro structural characterization and Optical characterization of pure and Gd-doped ceria thin films. Int. J. Sci. Eng. Res. 5(3), 185–190 (2014)Google Scholar
  43. 43.
    M. Radovic, Z.D. Dohcevic-Mitrovic, A. Golubovic, B. Matovic, M. Šcepanovic, Z.V. Popovic, Hydrothermal synthesis of CeO2 and Ce0.9Fe0.1O2 nanocrystals. Acta Phys. Pol. A 116, 614–617 (2009)CrossRefGoogle Scholar
  44. 44.
    A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Ferromagnetism in Co doped CeO2: observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett. 88, 142511 (2006)CrossRefGoogle Scholar
  45. 45.
    J.C. Bear, P.D. McNaughter, P. Southern, P. O’Brien, C.W. Dunnill, Nickel-doped ceria nanoparticles: the effect of annealing on room temperature ferromagnetism. Crystals 5, 312–326 (2015)CrossRefGoogle Scholar
  46. 46.
    N.S. Ferreira, L.G. Abracado, M.A. Macedo, The effects of Cr-doping on the room temperature ferromagnetism of chemically synthesized CeO2 – δ nanoparticles. Physica B 407, 3218–3221 (2012)CrossRefGoogle Scholar
  47. 47.
    T.S. Santos, W.S.D. Folly, M.A. Macedo, Ferromagnetism in diluted magnetic Zn-Co-doped CeO2–δ. Physica B 407, 3233–3235 (2012)CrossRefGoogle Scholar
  48. 48.
    Z. Ren, G. Xu, X. Wei, Y. Liu, X. Hou, P. Du, W. Weng, G. Shen, G. Han, Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl. Phys. Lett. 91(6), 063106 (2007)CrossRefGoogle Scholar
  49. 49.
    A.D. Fauzi, Theoretical study of the effect of oxygen vacancies on magnetism and charge transport of Fe3O4, March 2017Google Scholar
  50. 50.
    M. Radovica, Z. Dohcevic-Mitrovica, N. Paunovica, M. Šcepanovica, B. Matovicb, Z.V. Popovica, Effect of Fe2+(Fe3+) doping on structural properties of CeO2 nanocrystals. Acta Phys. Pol. A 116(1), 84–87 (2009)CrossRefGoogle Scholar
  51. 51.
    Q.-Y. Wen, H.-W. Zhang, Y.-Q. Song, Q.-H. Yang, H. Zhu, J.Q. Xiao, Room-temperature ferromagnetism in pure and Co doped CeO2 powders. J. Phys.: Condens. Matter. 19, 246205 (2007)Google Scholar
  52. 52.
    A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, A. Punnoose, Ferromagnetism in chemically synthesized CeO2 nanoparticles by Ni doping. Phys. Rev. B 76, 165206 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pure & Applied PhysicsUniversity of KotaKotaIndia
  2. 2.Department of PhysicsBanasthali UniversityNewaiIndia
  3. 3.Department of PhysicsMohanlal Sukhadia UniversityUdaipurIndia
  4. 4.Department of PhysicsGovt. Khetan Polytechnic CollegeJaipurIndia
  5. 5.CSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations