Advertisement

One-pot synthesis and characterization of MnCO3 hierarchical micro/nano twin-spheres with superior lithium storage performances

  • Haowen Liu
Article
  • 99 Downloads

Abstract

In this work, we reported a one-pot method to synthesize novel MnCO3 hierarchical micro/nano twin-spheres by a simple chemical precipitation method. The structure and morphology of the obtained powder are characterized by X-ray powder diffraction and field emission-scanning electron microscopy. As anode material of lithium-ion half cells, the as-prepared MnCO3 deliver a very high capacity, extra cycling stability and excellent rate capability. The discharge capacity of 890 mAh g−1 at 0.1 C is achieved after 100 cycles, showing a great application prospect in LIBs. The higher current charge–discharge and electrochemical impedance spectroscopy data indicate that material integrity is kept along the lithium ions insertion/extraction processes. The combination of nano-sizing, multiporous, and especially, the 3-dimensional hierarchical micro/nano structures are responsible for the superior lithium storage performances.

Notes

Compliance with ethical standards

Conflict of interest

The author declare that they have no conflict of interest toward any individual or organization.

References

  1. 1.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)CrossRefGoogle Scholar
  2. 2.
    Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Adv. Energy Mater. 7, 1601481 (2017). 2.CrossRefGoogle Scholar
  3. 3.
    J.O. Besenhard, J. Yang, M. Winter, J. Power Sources 68, 87 (1997)CrossRefGoogle Scholar
  4. 4.
    J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. Lou, Adv. Mater. 24, 5166 (2012)CrossRefGoogle Scholar
  5. 5.
    M.J. Arago´n, B. León, C.P. Vicente, J.L. Tirado, M.J. Aragón, J. Power Sources 196, 2863 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Zhang, R. Zhang, G. Liang, J. Feng, L. Lu, Y. Qian, Mater. Lett. 111, 165 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Zhou, X. Kong, M. Gao, F. Lian, B. Li, Z. Zhou, H. Cao, Inorg. Chem. 53, 9228 (2014)CrossRefGoogle Scholar
  8. 8.
    M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)CrossRefGoogle Scholar
  9. 9.
    A.S. Aricò, P. Bruce, B.P. Scrosati, J.-M. Tarascon, W. Schalkwijk, Nat. Mater. 4, 366 (2005)CrossRefGoogle Scholar
  10. 10.
    Q. Xie, Y. Ma, X. Zhang, H. Guo, A. Lu, L. Wang, G. Yue, D.-L. Peng, Electrochim. Acta 141, 374 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Y. Zhang, Y. Wen, L. Gu, G. Ma, Z. Su, Z. Tang, H. Zhao, D. Wang, Nat. Energy (2016).  https://doi.org/10.1038/NENERGY.2016.50 Google Scholar
  12. 12.
    H. Zhou, M.A. Naeem, P. Lv, J. Zhang, Z. Pang, L. Luo, Y. Cai, X. Xia, Q. Wei, J. Alloys Compd. 711, 414 (2017)CrossRefGoogle Scholar
  13. 13.
    R.A. Adams, V.G. Pol, A. Varma, Ind. Eng. Chem. Res. 56, 7173 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Chen, G. Chen, J. Pei, C. Yan, Y. Hu, Z. Qin, New J. Chem. (2017).  https://doi.org/10.1039/c7nj00750g Google Scholar
  15. 15.
    L. Zhang, T. Mei, X. Wang, J. Wang, J. Li, W. Xiong, Y. Chen, M. Hao, CrystEngComm 17, 6450 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Liu, H. Liu, X. Han, J. Solid State Electrochem. 21, 291 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Bai, X. Li, G. Liu, Y. Qian, S. Xiong, Adv. Funct. Mater. 24, 3012 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, B. Zhang, J. Feng, S. Xiong, RSC Adv. 5, 26863 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, J. Bai, X. Ma, J. Li, S. Xiong, J. Mater. Chem. A 2, 14236 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Su, Z. Zhou, X. Qin, Q. Tang, D. Wu, P. Shen, Nano Energy 2, 276 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Zhao, F. Feng, F. Yu, Q. Shen, J. Mater. Chem. A 3, 24095 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Zhang, R. Zhang, G. Liang, J. Feng, L. Lu, Y. Qian, Mater. Lett. 111, 165–168 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Wang, Y.-H. Shi, H.-H. Li, H.-F. Wang, X.-Y. Li, H.-Z. Sun, X.-L. Wu, H.-M. Xie, J.-P. Zhang, J.-W. Wang, Electrochim. Acta 215, 267 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Zhang, R. Zhang, J. Feng, L. Ci, S. Xiong, J. Yang, Y. Qian, L. Li, Nanoscale 7, 232 (2015)CrossRefGoogle Scholar
  26. 26.
    M.J. Arago´n, C. Pe´rez-Vicente, J.L. Tirado, Electrochem. Commun. 9, 1744 (2007)CrossRefGoogle Scholar
  27. 27.
    J.-C. Fang, Y.-F. Xu, G.-L. Xu, S.-Y. Shen, J.-T. Li, L. Huang, S.-G. Sun, J. Power Sources 304, 15 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei ProvinceSouth-Central University for NationalitiesWuhanPeople’s Republic of China

Personalised recommendations