Advertisement

Structural design and fabrication of 830 nm GaAsP/AlGaAs low polarization superluminescent diode with tensile-strained wells

  • Shang-jun Liu
  • Yong Zhou
  • Shuai Zhou
  • Cai-ping Mo
  • Hong Zhao
  • Shi-hao Ding
  • Kun Tian
  • Zu-rong Tang
Article

Abstract

In this paper, super luminescent diode (SLD) at 830 nm with high power efficiency and low polarization was reported. The mode gain of tensile-strained GaAsP/AlGaAs double-quantum well (DQW) was calculated by the Lüttinger–Kohn Hamiltonian, including confinement effects and tetragonal strain. The results showed that the transverse-electric polarized mode gain was almost the same with transverse-magnetic polarized mode gain of the device with GaAs0.92P0.08 quantum well. Tensile-strained GaAs0.92P0.08/Al0.25Ga0.75As DQW SLD was prepared by Metal–organic Chemical Vapor Deposition. The SLD of ridge wave guide structure was fabricated with “J-shape” absorbing region structure with a tilt angle of 7°. The stack layers of TiO2 and SiO2 were coated on two facets as anti-reflection films, with residual facet reflectivity less than 1%. The SLD testing result showed the degree of polarization was 4%, optical power was 11.2 mW and peak wavelength of 824 nm at injection current was 100 mA. The experimental results were in good agreement with theoretical calculation results.

References

  1. 1.
    K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981)CrossRefGoogle Scholar
  2. 2.
    D.S. Adler, ТН Ко, A.K. Konorev, D.S. Mamedov, V.V. Prokhorov, J.J. Fujimoto, S.D. Yakubovich, Quantum Electron. 34, 915 (2004)CrossRefGoogle Scholar
  3. 3.
    U. Schaudig, A. Hassenstein, A. Bernd, A. Walter, G. Richard, Graefes Arch. Clin. Exp. Ophthalmol. 236, 588 (1998)CrossRefGoogle Scholar
  4. 4.
    D.D. Sampson, W.T. Holloway, Electron. Lett. 30, 1611 (1994)CrossRefGoogle Scholar
  5. 5.
    O. Mikami, Y. Noguchi, K. Magari, Y. Suzuki, IEEE Trans. Photon. Technol. Lett. 4, 703 (1992)CrossRefGoogle Scholar
  6. 6.
    M. Itoh, Y. Shibata, T. Kakitsuka, Y. Kadota, H. Sugiura, Y. Tohmori, J. Lightwave Technol. 24, 1478 (2006)CrossRefGoogle Scholar
  7. 7.
    D. Heo, J. Lee, I. Yun, H. Shin, S. Kim, D. Jung, D. Shin, H. Kim, H. Shin, S. Park, in Lasers and Electro-Optics Society, 2005 (LEOS 2005). The 18th Annual Meeting of the IEEE (2005)Google Scholar
  8. 8.
    T. Li, J. Wang, Y. Feng, J. Jin, W. Zhu, Y. Tang, W. Xu, T. Huang, D. Eu, in Proceedings of SPIE 5316, p. 332 (2004)Google Scholar
  9. 9.
    A.T. Semenov, V.R. Shidlovski, S.A. Safin, Electron. Lett. 29, 854 (1993)CrossRefGoogle Scholar
  10. 10.
    V.K. Batovrin, I.A. Garmash, V.M. Gelikonov, G.V. Gelikonov, A.V. Lyubarskii, A.G. Plyavenek, S.A. Safin, A.T. Semenov, V.R. Shidlovskil, M.V. Shramenko, S.D. Yakubovich, Quantum Electron. 26, 109 (1996)CrossRefGoogle Scholar
  11. 11.
    H. Tanaka, Electron. Lett. 29, 1611 (1993)CrossRefGoogle Scholar
  12. 12.
    D. Sun, D.W. Treat, IEEE Photon. Technol. Lett. 8, 13 (1996)CrossRefGoogle Scholar
  13. 13.
    W. Pan, H. Yaguchi, Y. Hanamaki, M. Ishikawa, Y. Kaneko, K. Onabe, R. Ito, Y. Shiraki, J. Cryst. Growth 170, 585 (1997)CrossRefGoogle Scholar
  14. 14.
    F. Agahi, A. Baliga, K.M. Lau, N.G. Anderson, Solid-State Electron. 41, 647 (1997)CrossRefGoogle Scholar
  15. 15.
    J. Sebastian, G. Beister, F. Bugge, F. Buhrandt, G. Erbert, H.G. Hänsel, R. Hülsewede, A. Knauer, W. Pittroff, R. Staske, M. Schröder, H. Wenzel, M. Weyers, G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 7, 334 (2001)CrossRefGoogle Scholar
  16. 16.
    P.D. Colbourne, D.T. Cassidy, IEEE J. Quantum Electron. 27, 914 (1991)CrossRefGoogle Scholar
  17. 17.
    Z.Q. Li, Z.M.S. Li, IEEE J. Quantum Electron. 46, 454 (2010)CrossRefGoogle Scholar
  18. 18.
    S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995)Google Scholar
  19. 19.
    H. Tanaka, J.i.. Shimada, Y. Suzuki, Appl. Phys. Lett. 64, 158 (1994)CrossRefGoogle Scholar
  20. 20.
    T.C. Chong, C.G. Fonstad, IEEE J. Quantum Electron. 25, 171 (1989)CrossRefGoogle Scholar
  21. 21.
    D. Labukhin, X. Li, IEEE J. Quantum Electron. 42, 1137 (2006)CrossRefGoogle Scholar
  22. 22.
    C. Harder, P. Buchmann, H. Meier, Electron. Lett. 22, 1081 (1986)CrossRefGoogle Scholar
  23. 23.
    Y.C. Yoo, I.K. Han, J. Korean Phys. Soc. 61, 1325 (2012)CrossRefGoogle Scholar
  24. 24.
    C.-F. Lin, C.-S. Juang, IEEE Photon. Technol. Lett. 8, 206 (1996)CrossRefGoogle Scholar
  25. 25.
    A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, P. Perlin, Appl. Phys. Express 6, 092102 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Asai, K. Oe, J. Appl. Phys. 54, 2052 (1983)CrossRefGoogle Scholar
  27. 27.
    J. Park, X. Li, J. Lightwave Technol. 24, 2473 (2006)CrossRefGoogle Scholar
  28. 28.
    J. Ryan, R. Taylor, A. Turberfield, A. Maciel, J. Worlock, A. Gossard, W. Wiegmann, Phys. Rev. Lett. 53, 1841 (1984)CrossRefGoogle Scholar
  29. 29.
    H. Carrère, V. Truong, X. Marie, T. Amand, B. Urbaszek, R. Brenot, F. Lelarge, B. Rousseau, Microelectron. J. 40, 827 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shang-jun Liu
    • 1
  • Yong Zhou
    • 1
  • Shuai Zhou
    • 1
  • Cai-ping Mo
    • 1
  • Hong Zhao
    • 1
  • Shi-hao Ding
    • 1
  • Kun Tian
    • 1
  • Zu-rong Tang
    • 1
  1. 1.Chongqing Optoelectronics Research InstituteChongqingChina

Personalised recommendations