Skip to main content
Log in

Investigation of dielectric, mechanical, and electrical properties of flame synthesized Y2/3Cu2.90Zn0.10Ti4O12 material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple flame synthesis method was used to fabricate the Y2/3Cu2.90Zn0.10Ti4O12 (YCZTO) material. The X-ray diffraction analysis showed the single-phase formation of the YCZTO material directly sintered at 1050 °C for 15 h. Scanning electron microscopy showed well packed grains with high densification of morphology having the average grain size in range of 0.8–4 µm. X-ray photoelectron spectroscopy analysis showed that the Cu and Zn are in + 2 valence state confirming the Zn successfully incorporated at Cu2+ site. YCZTO exhibited the εr value of ∼ 1.4 × 103 and dielectric loss (tan δ) of ∼ 0.09 at 50 °C. The impedance spectroscopy analysis suggested that the obtained YCZTO material is electrically heterogeneous. The activation energies (Ea) for conduction at the grain boundaries at higher temperature range (110–150 °C) were found to be in the range ∼ 1.0 eV. Besides the dielectric property, YCZTO also showed the interesting mechanical and I–V characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Zhang, J. Zhang, Y. Zhou, Z. Xie, Z. Yue, L. Li, Highly accelerated resistance degradation and thermally stimulated relaxation in BaTiO3-based multilayer ceramic capacitors with Y5V specification. J. Alloys Compd. 662, 308–314 (2016)

    CAS  Google Scholar 

  2. P. Long, X. Liu, X. Long, Z. Yi, Dielectric relaxation, impedance spectra, piezoelectric properties of (Ba, Ca)(Ti, Sn)O3 ceramics and their multilayer piezoelectric actuators. J. Alloys Compd. 706, 234–243 (2017)

    CAS  Google Scholar 

  3. J. Li, K. Wu, R. Jia, L. Hou, L. Gao, S. Li, Towards enhanced varistor property and lower dielectric loss of CaCu3Ti4O12 based ceramics. Mater. Des. 92, 546–551 (2016)

    CAS  Google Scholar 

  4. L. Singh, U.S. Rai, K.D. Mandal, Dielectric properties of zinc doped nanocrystalline calcium copper titanate synthesized by different approach. Mater. Res. Bull. 48, 2117–2122 (2013)

    CAS  Google Scholar 

  5. L. Singh, I.W. Kim, B.C. Sin, S.K. Woo, S.H. Hyun, K.D. Mandal, Y. Lee, Combustion synthesis of nano-crystalline Bi2/3 Cu3Ti2.90Fe0.10O12 using inexpensive TiO2 raw material and its dielectric characterization. Powder Tech. 280, 256–265 (2015)

    CAS  Google Scholar 

  6. Z. Liu, Z. Yang, X. Chao, Structure, dielectric property and impedance spectroscopy of La2/3Cu3Ti4O12 ceramics by sol–gel method. J. Mater. Sci. 27, 8980–8990 (2016)

    CAS  Google Scholar 

  7. L. Singh, U.P. Azad, S.P. Singh, V. Ganesan, U.S. Rai, Y. Lee, Yttrium copper titanate as a highly efficient electrocatalyst for oxygen reduction reaction in fuel cells, synthesized via ultrafast automatic flame technique. Sci. Rep. 7, 9407–9410 (2017)

    Google Scholar 

  8. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000)

    CAS  Google Scholar 

  9. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A.Loidl, Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl. Phys. Lett. 91, 022910–022913 (2007)

    Google Scholar 

  10. L. Singh, I.W. Kim, W.S. Woo, B.C. Sin, H. Lee, Y. Lee, A novel low cost non-aqueous chemical route for giant dielectric constant CaCu3Ti4O12 ceramic. Solid State Sci. 43, 35–45 (2015)

    CAS  Google Scholar 

  11. B.A. Bender, M.J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B 117, 339–347 (2005)

    Google Scholar 

  12. U.S. Rai, L. Singh, K.D. Mandal, N.B. Singh, An overview on recent developments in the synthesis, characterization and properties of high dielectric constant calcium copper titanate nano-particles. Nanosci. Technol. 2, 1–17 (2014)

    Google Scholar 

  13. L. Liu, H. Fan, P. Fang, L. Jin, Electrical heterogeneity in CaCu3Ti4O12 ceramics fabricated by sol–gel method. Solid State Comm. 142, 573–576 (2007)

    CAS  Google Scholar 

  14. B. Shri Prakash, K.B.R. Varma, The influence of the segregation of Cu-rich phase on the microstructural and impedance characteristics of CaCu3Ti4O12 ceramics. J. Mater. Sci. 42, 7467–7477 (2007)

    Google Scholar 

  15. L. Ni, X.M. Chen, Enhancement of giant dielectric response in CaCu3Ti4O12 ceramics by Zn substitution. J. Am. Ceram. Soc. 93, 184–189 (2010)

    CAS  Google Scholar 

  16. S.D. Hutagalung, L.Y. Ooi, Z.A. Ahmad, Improvement in dielectric properties of Zn-doped CaCu3Ti4O12 electroceramics prepared by modified mechanical alloying technique. J. Alloy. Compd. 476, 477–481 (2009)

    CAS  Google Scholar 

  17. L. Singh, U.S. Rai, K.D. Mandal, Influence of Zn doping on microstructures and dielectric properties in CaCu3Ti4O12 ceramic synthesised by semiwet route. Adv. Appl. Ceram. 111, 374–380 (2012)

    CAS  Google Scholar 

  18. W. Li, S. Qiu, N. Chen, G. Du, Enhanced dielectric response in Mg-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. Technol. 26, 682–686 (2010)

    CAS  Google Scholar 

  19. L. Singh, U.S. Rai, K.D. Mandal, Dielectric, modulus and impedance spectroscopic studies of nanostructured CaCu2.70Mg0.30Ti4O 12 electro-ceramic synthesized by modified sol–gel route. J. Alloy. Compd. 555, 176–183 (2013)

    CAS  Google Scholar 

  20. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, Microstructure, dielectric properties and impedance spectroscopy of Ni doped CaCu3Ti4O12 ceramics. RSC Adv. 6, 55984–55989 (2016)

    CAS  Google Scholar 

  21. Z. Kafi, A. Kompany, H. Arabi, A.K. Zak, The effect of cobalt-doping on microstructure and dielectric properties of CaCu3Ti4O12 ceramics. J. Alloy. Compd. 727, 168–176 (2017)

    CAS  Google Scholar 

  22. P. Liang, Z. Yang, X. Chao, Z. Liu, Giant dielectric constant and good temperature stability in Y2/3Cu3Ti4O12 ceramics. J. Am. Ceram. Soc. 95, 2218–2225 (2012)

    CAS  Google Scholar 

  23. P. Liang, F. Li, X. Chao, Z. Yang, Effects of Cu stoichiometry on the microstructure, electrical conduction, and dielectric responses of Y2/3Cu3Ti4O12, Ceram. Int. 41, 11314–11322 (2015)

    CAS  Google Scholar 

  24. V. Rajendar, B. Rajitha, K.V. Rao, Novel sol–gel method for synthesis of Bi2/3Cu3Ti4O12 (BCTO) and its light harvesting applications. J. Mater. Sci. 26, 9661–9666 (2015)

    CAS  Google Scholar 

  25. Z. Liu, X. Chao, P. Liang, Z. Yang, L. Zhi, Differentiated electric behaviors of La2/3Cu3Ti4O12 ceramics prepared by different methods. J. Am. Ceram. Soc. 97, 2154–2163 (2014)

    CAS  Google Scholar 

  26. S. Sharma, M.M. Singh, K.D. Mandal, Microstructure and magnetic properties of Y2/3Cu3Ti4O12 ceramic. New J. Chem. 41, 10383–10389 (2017)

    CAS  Google Scholar 

  27. S. Jesurani, S. Kanagesan, R. Velmurugan, C. Kumar, T. Kalaivani, Sol–gel combustion synthesis of giant dielectric CaCu3Ti4O12 nano powder. J. Manuf. Eng. 5, 124–128 (2010)

    Google Scholar 

  28. J. Li, P. Liang, J. Yi, X. Chao, Z. Yang, Phase formation and enhanced dielectric response of Y2/3Cu3Ti4O12 ceramics derived from the sol–gel process. J. Am. Ceram. Soc. 98, 795–803 (2015)

    Google Scholar 

  29. S. Sharma, K.D. Mandal, Effect of zinc doping at Cu2+- site in Y2/3Cu3Ti4O12 ceramic synthesized by semi-wet route. Trans. Power Metall. Assoc. India 41, 82–87 (2015)

    Google Scholar 

  30. Y. Wu, Q. Zhang, X. Yin, H. Cheng, Template-free synthesis of mesoporous anatase yttrium-doped TiO2 nanosheet-array films from waste tricolor fluorescent powder with high photocatalytic activity. RSC Adv. 3, 9670–9676 (2013)

    CAS  Google Scholar 

  31. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 112, 114115 (2012)

    Google Scholar 

  32. P. Zhang, X. Li, Q. Zhao, S. Liu, Synthesis and optical property of one dimensional spinel ZnMn2O4 nanorods. Nanoscale Res. Lett. 6, 323–328 (2011)

    Google Scholar 

  33. S. Watanabe, X. Ma, C. Song, Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD. J. Phys. Chem. C 113, 14249–14257 (2009)

    CAS  Google Scholar 

  34. A. Sen, U.N. Maiti, R. Thapa, K.K. Chattopadhyay, Effect of vanadium doping on the dielectric and nonlinear current–voltage characteristics of CaCu3Ti4O12 ceramic. J. Alloy. Compd. 506, 853–857 (2010)

    CAS  Google Scholar 

  35. M. Ganaie, S. Ahmad, S.I.M. Zulfequar, Electrical conductivity and dielectric properties of Se100–xTex alloy. Int. J. Phys. Astron. 2, 51–64 (2014)

    Google Scholar 

  36. M.B. Hossen, A.K.M. Akther Hossain, Frequency and temperature dependent transport properties of NiCuZn ceramic oxide. Mater. Sci.-Pol. 33, 259–267 (2015)

    CAS  Google Scholar 

  37. J. Li, P. Liang, J. Yi, X. Chao, Z. Yang, Phase formation and enhanced dielectric response of Y2/3Cu3Ti4O12 ceramics derived from the sol–gel process. J. Am. Ceram. Soc. 98, 1–9 (2014)

    CAS  Google Scholar 

  38. S. Sharma, S.S. Yadav, M.M. Singh, K.D. Mandal, Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic. J. Adv. Dielect. 4, 1450030–1450038 (2014)

    CAS  Google Scholar 

  39. L. Yang, X. Chao, Z. Yang, N. Zhao, L. Wei, Z. Yang, Dielectric constant versus voltage and non-Ohmic characteristics of Bi2/3Cu3Ti4O12 ceramics prepared by different methods. Ceram. Int. 42, 2526–2533 (2016)

    CAS  Google Scholar 

  40. Z. Xu, H. Qiang, Enhanced dielectric properties of Zn and Mn co-doped CaCu3Ti4O12 ceramics. J. Mater. Sci. 28, 376–380 (2017)

    CAS  Google Scholar 

  41. F. Han, S. Ren, J. Deng, T. Yan, X. Ma, B. Peng, L. Liu, Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics. J. Mater. Sci. 28, 17378–17387 (2017)

    CAS  Google Scholar 

  42. C. Mu, H. Zhang, Y. He, J. Shen, P. Liu, Influence of dc bias on the dielectric relaxation in Fe-substituted CaCu3Ti4O12 ceramics: grain boundary and surface effects. J. Phys. D 42, 175410–175416 (2009)

    Google Scholar 

  43. H. Wang, S. Li, J. He, C. Lin, Dielectric properties of CaCu3Ti4O12 ceramics: effect of high purity nanometric powders. J. Mater. Sci. 25, 1842–1847 (2014)

    CAS  Google Scholar 

  44. L. Liu, D. Shi, S. Zheng, Y. Huang, S.S. Wu, Y. Li, L. Fang, C. Hu, Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater. Chem. Phys. 139, 844–850 (2013)

    CAS  Google Scholar 

  45. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Very high-performance dielectric properties of Ca1–3x/2YbxCu3Ti4O12 ceramics. J. Alloy. Compd. 612, 103–109 (2014)

    CAS  Google Scholar 

  46. Y. Huang, D. Shi, L. Liu, G. Li, S. Zheng, L. Fang, High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3. Appl. Phys. A 114, 891–896 (2014)

    CAS  Google Scholar 

  47. X. Sun, J. Deng, S. Liu, T. Yan, B. Peng, W. Jia, Z. Mei, H. Su, L. Fang, L. Liu, Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics. Appl. Phys. A 122, 864–871 (2016)

    Google Scholar 

  48. W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater. Des. 123, 15–23 (2017)

    CAS  Google Scholar 

  49. G. Ruhl, W. Lehnert, M. Lukosius, C. Wenger, C.B. Kaynak, T. Blomberg, S. Haukka, P.K. Baumann, W. Besling, A. Roest, B. Riou, S. Lhostis, A. Halimaou, F. Roozeboom, E. Langereis, W.M.M. Kessels, A. Zauner, S. Rushworth, Dielectric material options for integrated capacitors. ECS J. Solid State Sci. Technol. 3, N120-N125 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF-2015R1D1A3A01019167 for Y. Lee and NRF-2015R1D1A4A01019630 for L. Singh) and Priority Research Centers Program (NRF-2009-0093818) funded by the Ministry of Education in the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngil Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Sheeraz, M., Chowdhury, M.N. et al. Investigation of dielectric, mechanical, and electrical properties of flame synthesized Y2/3Cu2.90Zn0.10Ti4O12 material. J Mater Sci: Mater Electron 29, 10082–10091 (2018). https://doi.org/10.1007/s10854-018-9052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9052-x

Navigation