Skip to main content

Advertisement

Log in

Solid-state bonding of silicon chips to copper substrates with graded circular micro-trenches

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon (Si) chips of 5 mm × 5 mm were bonded directly to copper (Cu) substrates using solid-state process at 300 °C without using any die-attach materials. A static pressure of 6.9 MPa was applied. To deal with the large mismatch in coefficient of thermal expansion (CTE) between Si and Cu, graded circular micro-trenches were fabricated on the Cu substrates. The micro-trenches provide space for Cu material to move into during the bonding process where the Cu surface incurs plastic deformation to conform to Si bottom surface for intimate contact. The micro-trenches also help relax stresses on the bonding interface caused by the fact that Cu contracts significantly more than Si during cooling down. The results obtained are encouraging, implying that the concept of using micro-trenches work. Scanning electron microscopy (SEM) images on cross sections of bonded structures show that Si chips were well bonded to Cu substrates without voids or defects on the interface and without any cracks on Si chip. Shear test were performed on six samples. It turned out that, of all six samples, the Si chip fractured first and the entire Si bottom surface was stilled well bonded to the Cu substrate. The average breakage force of Si chips on six samples is 13.5 Kgf. The breakage force of the joint cannot be determined but is certainly higher than 13.5 Kgf, which is more than twice of the specification American Military Standard. The new chip bonding structure with solid-state process reported in this paper eliminates the use of die-attach materials and the thermal resistance associated with the die-attach. It also removes the operating temperature limit constrained by the melting temperature of die-attach materials. We except this new bonding structure design to be a valuable alternative to high power and high temperature devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloy. Compd. 671, 340 (2016)

    Article  CAS  Google Scholar 

  2. L. Bernstein, J. Electrochem. Soc. 113, 1282 (1966)

    Article  CAS  Google Scholar 

  3. Y.Y. Wu, D. Nwoke, F.D. Barlow, C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1420 (2014)

    Article  CAS  Google Scholar 

  4. M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, T. Komatsu, Appl. Phys. A 93, 467 (2008)

    Article  CAS  Google Scholar 

  5. Z. Zhang, G.Q. Lu, IEEE Trans. IEEE Trans. Electron. Packag. Manuf. 25, 279 (2002)

    Article  CAS  Google Scholar 

  6. J.G. Bai, J.N. Calata, G.Q. Lu, IEEE Trans. Compon. Packag. Manuf. Technol. 30, 241 (2007)

    CAS  Google Scholar 

  7. Q.Y. Xu, Y.H. Mei, X. Li, G.Q. Lu, J. Alloy. Compd. 675, 317 (2016)

    Article  CAS  Google Scholar 

  8. S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Microelectron. Reliab. 55, 2524 (2015)

    Article  CAS  Google Scholar 

  9. S. Chua, K.S. Siow, J. Alloy. Compd. 687, 486 (2016)

    Article  CAS  Google Scholar 

  10. H. He, R. Fu, D. Wang, X. Song, M. Jin, Mater. Lett. 61, 4131 (2007)

    Article  CAS  Google Scholar 

  11. N. Iwase, K. Anzai, K. Shinozaki, O. Hirao, T.D. Thanh, Y. Sugiura, IEEE Trans. Compon. Packag. Manuf. Technol. 8, 253 (1985)

    Google Scholar 

  12. J. Schulz-Harder, Microelectron. Reliab. 43, 359 (2003)

    Article  CAS  Google Scholar 

  13. S. Catellani, J.C. Crebier, C. Schaeffer, T. Marsala, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230) 1954, 1955 (2001)

  14. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, T. Takahashi, IEEE Trans. Compon. Hybrids, Manuf. Technol. 13, 313 (1990)

    Article  CAS  Google Scholar 

  15. Y.L. Chen, C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 7, 10 (2017)

    Article  CAS  Google Scholar 

  16. C.C. Lee, L. Cheng, Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, IEEE, 1335, (2014)

  17. O. Çakır, H. Temel, M. Kiyak, J. Mater. Process. Technol. 162–163, 275 (2005)

    Article  Google Scholar 

  18. C.C. Lee, D.T. Wang, W.S. Choi, Rev. Sci. Instrum. 77, 125104 (2006)

    Article  Google Scholar 

  19. H.R. Tofteberg, K. Schjølberg-Henriksen, E.J. Fasting, A.S. Moen, M.M. Taklo, E.U. Poppe, J. Micromech. Microeng. 24, 084002 (2014)

    Article  Google Scholar 

  20. P. Hess, Appl. Surf. Sci. 106, 429 (1996)

    Article  CAS  Google Scholar 

  21. J. Wu, C.C. Lee, Mater. Sci. Eng., A 668, 160 (2016)

    Article  CAS  Google Scholar 

  22. J. Dolbow, M. Gosz, Mech. Mater. 23, 311 (1996)

    Article  Google Scholar 

  23. National Physical Laboratory, Shear testing of die. http://www.npl.co.uk/science-technology/advanced-materials/materials-areas/electronics-interconnection/shear-testing-of-die. Accessed 23 Jan 2018

  24. MIL-STD-883H method 2019.8, Die shear strength, Department of Defense, 2010

  25. Y.Y. Wu, C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 711 (2013)

    Article  CAS  Google Scholar 

  26. J. Wu, C.C. Lee, J. Mater. Sci. 53, 2618 (2018)

    Article  CAS  Google Scholar 

  27. C. Sha, P.J. Wang, W.P. Lin, C.C. Lee, ASME. J. Electron. Packag. 133(4), 041007 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

SEM work was performed at UC Irvine Materials Research Institute (IMRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YL., Wu, J. & Lee, C.C. Solid-state bonding of silicon chips to copper substrates with graded circular micro-trenches. J Mater Sci: Mater Electron 29, 10037–10043 (2018). https://doi.org/10.1007/s10854-018-9047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9047-7

Navigation