Advertisement

Properties optimization of Er3+ doped lead–sodium–yttrium–fluoride phosphor through combining LCS–HSR method

Article
  • 18 Downloads

Abstract

Up-conversion luminescence materials sensitive to 1550 nm are of broad application prospects. One of the most important properties is that the phosphor should be ultrafine and dispersed well with excellent luminescence intensity in order to meet the matching application requirements of those image and detection devices. The low-temperature combustion synthesis method, a most popular method for the synthesis of ultrafine oxides, was adopted to synthesize the Er3+ doped lead–sodium–yttrium–fluoride phosphor using glycine as the fuel. Orthogonal experiments were carried out to determine the optimum cation molar-proportion. Dispersing agent (NH4)2SO4 was adopted to improve the dispersion state of the ultrafine phosphor and the high-temperature solid-state reaction process was performed to optimize its morphology and luminescence properties. The sample presents Er3+ characteristic emission peaks and its luminescence mechanism excited at 1550 nm was discussed.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61307118, 51602027), Jilin Province Education Department Project (Grant No. JJKH20170607KJ).

References

  1. 1.
    Y. Zhou, C. Fen, G. Yang, Theoretical study of Er3+-doped tellurite-based upconversionfiber laser. Chin. J. Lasers 36(7), 1894–1899 (2009)CrossRefGoogle Scholar
  2. 2.
    L.Y. Ang, M.E. Lim, L.C. Ong et al., Applications of upconversion nanoparticles in imagingdetection and therapy. Nanomedicine 6(7), 1273–1288 (2011)CrossRefGoogle Scholar
  3. 3.
    R.K. Tang, W.J. Wu, X.J. Li etal, Two-dimensional infrared and mid-infrared imaging by single-photon frequency upconversion. J Mod. Opt. 62(14), 1126–1131 (2015)CrossRefGoogle Scholar
  4. 4.
    F. Zhang, R.C. Haushalter, R.W. Haushalter et al., Rare earth upconvertingnanobarcodes for multiplexed biological detection. Small 7(14), 1972–1976 (2011)CrossRefGoogle Scholar
  5. 5.
    C.Y. Lu, X.B. Wang, Y.L. Guo, G.C. Wang, B. Sun, Y. Lin, Q. Wan, Laser Optoelectron. Prog. 42(3), 32–35 (2005) in ChineseGoogle Scholar
  6. 6.
    H. Huang, C. Shende, A. Sengupta, F. Inscore, C. Brouillette, W. Smith, S. Farquharson, J. Raman Spectrosc. 43(6), 701–705 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Tao, Z.G. Liu, M. Li, M.T. Wang, J Chin. Soc. Rare Earths 32(2), 221–225 (2014)Google Scholar
  8. 8.
    M. Biswas, S. Bandyopadhyay, Mater. Res. Bull. 47(3), 544–550 (2012)CrossRefGoogle Scholar
  9. 9.
    X.L. Chen, J.C. Zhang, Z.L. Huang, G.Y. Liu, Q. Cai, Y. He, J.M. Guo, G.W. Zhang, J. Ceram. Sci. Technol. 6(3), 201–206 (2015)Google Scholar
  10. 10.
    C.O. Ehi-Eromosele, B.I. Ita, A. Edobor-Osoh, Int. J. Self-Propag. High-Temp. Synth. 25(1), 23–29 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Lu, X. Zhang, Z. Bai, X. Wang, Infrared-to-visible upconversion luminescence of Er3+ doped barium–natrium–yttrium–fluoride phosphor. J. Lumin. 131, 2372–2376 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Lu, X. Zhang, Optimization of the synthesis ofupconversion luminescence material NaYF4:Er3+, Yb3+nanometer-phosphor by the low-temperature combustion synthesis method. J. Rare Earths 31(1), 8–12 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Lu, X. Zhang, Optimization of the low temperature combustion synthesis of Er3+ doped lead–natrium–yttrium–fluoride phosphor. Funct. Mater. Lett. 7(1), 1450004 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Hui, L. Lu, X. Zhang, Performance optimization of Er3+ doped barium–natrium–yttrium–fluoride phosphor synthesized by the low-temperature combustion synthesis method. J. Mater. Sci. (2017).  https://doi.org/10.1007/s10854-017-6776-y Google Scholar
  15. 15.
    Y. Yang, T. Su, C. Zhao, C. Li, M. Jiang, L. Lu, Orthogonal design of technological parameters of up-conversion fluorescence materials at 1.5 µm. J. Changchun Univ. Sci. Technol. 34(4), 103–105 (2011)Google Scholar
  16. 16.
    S.R. Jain, K.C. Adiga, V.R.P. Vemeker, Combust. Flame. 40(1), 71 (1981)CrossRefGoogle Scholar
  17. 17.
    P. Wang, N. Wang, X. Zhang, Chin. J. Inorg. Chem. 28, 2335–2340 (2012)Google Scholar
  18. 18.
    S. Li, B. Liu, J. Li et al., J. Alloys Compd. 678, 258–266 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Wang, Z.D. Tao, X. Sun, J. Chin. Rare Earth Soc. 21, 15–18 (2003)Google Scholar
  20. 20.
    S.L. Zhao, Z. Xu, Y.B. Hou, X.J. Pei, X.R. Xu, J. Chin. Rare Earth Soc. 19(6), 518–521 (2001)Google Scholar
  21. 21.
    J.F. Suyver, A. Aebischer, D. Biner, Opt. Mater. 27, 1111–1130 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunPeople’s Republic of China

Personalised recommendations