Effect of complexing agents: investigations on structural, morphological, topographical and optical analysis of copper iron sulphide thin films deposited by chemical bath deposition method

  • E. Anuja
  • R. Thiruneelakandan
  • K. Manikandan


Copper iron sulphide (FeCuS2) thin films deposited by chemical bath deposition method using ferrous sulphate and copper sulphate as cationic sources and sodium sulphide as anionic source with complexing agents, EDTA and Leishman stain were reported. The structural, optical and morphological studies were carried out using X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–Visible spectroscopy techniques. The X-ray spectrum reveals that the films are polycrystalline nature and also showed the deposition of cubic phases at room temperature. The SEM images for prepared films have clear morphology influenced by the complexing agents used in deposition process. The result of AFM studies shown that the particles in the film have grain size around ~ 60–70 nm and also have almost similar thickness. Based on the optical absorbance spectra the FeCuS2 film exhibited a high absorbance in the visible region. The absorption edge shifted toward lower wavelength with varying complexing agents. The band gap value obtained was found to be 3.57–3.85 eV. From these results, it is indicated that the prepared films are suitable candidate for solar cell applications.



We thank Crystal Growth Center, Anna University Chennai for providing AFM Study, and International Research Centre, Kalasalingam University, Virudhunagar for providing SEM Analysis, and Central Facilities, SASTRA University, Thanjavur for Hall Measurement Effect.


  1. 1.
    H.A. Macpherson, C.R. Stoldt, ACS Nano 6(10), 8940 (2012)CrossRefGoogle Scholar
  2. 2.
    A.K. Raturi, S. Waita, B. Aduda, T. Nyangonda, Renewable Energy 11(2), 191 (1997)CrossRefGoogle Scholar
  3. 3.
    L. Shuling, L. Miaomiao, L. Shu, L. Honglin, Y. Lu, Appl. Surf. Sci. 268, 213 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Steinhagen, T.B. Harvey, C.J. Stolle, J. Harris, B.A. Korgel, J. Phys. Chem. Lett. 3(17), 2352 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, M. Law, J. Am. Chem. Soc. 133(4), 716 (2011)CrossRefGoogle Scholar
  6. 6.
    M.A. Mohammed, A.M. Mousa, J.P. Ponpon, J. Semicond. Technol. Sci. 9(2), 111 (2009)CrossRefGoogle Scholar
  7. 7.
    R.H. Misho, W.A. Murad, Sol. Energy Mater. Sol. Cells 27, 335 (1992)CrossRefGoogle Scholar
  8. 8.
    B. Thomas, T. Cibik, C. Hopfner, K. Diesner, G. Ehlers, S. Fiechter, J. Mater. Sci. 9, 61 (1998)Google Scholar
  9. 9.
    D. Lichtenberger, K. Ellmer, R. Schieck, S. Fiechter, Appl. Surf. Sci. 70–71(2), 583 (1993)CrossRefGoogle Scholar
  10. 10.
    Y.Z. Dong, Y.F. Zheng, H. Duan, Y.F. Sun, Mater. Lett. 59, 2398 (2005)CrossRefGoogle Scholar
  11. 11.
    Z.J. Luan, L.Y. Huang, F. Wang, L. Meng, Appl. Surf. Sci. 258, 1505 (2011)CrossRefGoogle Scholar
  12. 12.
    K. Manikandan, P. Mani, C. Surendra Dilip, S. Valli, P. Fermi Hilbert Inbaraj, J. Joseph Prince, Appl. Surf. Sci. 288, 76 (2014)CrossRefGoogle Scholar
  13. 13.
    S.C. Ezugwu, F.I. Ezema, P.U. Asogwa, Chalcogenide Lett. 7(5), 341 (2010)Google Scholar
  14. 14.
    J. Woon-Jo, P. Cye-Choon, Sol. Energy Mater. Sol. Cells 75, 93 (2003)CrossRefGoogle Scholar
  15. 15.
    D.M. Berg, D. Rabie, G. Levent, Z. Guillaume, S. Susanne, J.D. Phillip, Thin Solid Films 520, 6291 (2012)CrossRefGoogle Scholar
  16. 16.
    G.K. Padam, S.U.M. Rao, Sol. Energy Mater. 13(4), 297 (1986)CrossRefGoogle Scholar
  17. 17.
    V. Estrella, M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 18(2), 190 (2003)CrossRefGoogle Scholar
  18. 18.
    S.H. Pawar, S.P. Tamhankar, C.D. Lokhande, Sol. Energy Mater. 14(1), 71 (1986)CrossRefGoogle Scholar
  19. 19.
    L. Jae-Hyeong, S. Woo-Chang, Y. Jun-Sin, Y. Yeong-Sik, Sol. Energy Mater. Sol. Cells 75(1–2), 227 (2003)Google Scholar
  20. 20.
    Z.J. Luan, Y. Wang, F. Wang, L.T. Huang, L. Meng, Thin Solid Films 519(2), 7830 (2011)CrossRefGoogle Scholar
  21. 21.
    S.K. Jagannathan, A.J. Peter, V. Mahalingam, R. Krishnan, New J. Chem. 41, 14977 (2017)CrossRefGoogle Scholar
  22. 22.
    K. Manikandan, P. Mani, P. Fermi Hilbert Inbaraj, T. Dominic Jospeh, V. Thangaraj, C. Surendra Dilip, J. Joseph Prince, Indian J. Pure Appl. Phys. 52(5), 354 (2014)Google Scholar
  23. 23.
    P. Mani, K. Manikandan, J. Joseph Prince, J. Mater. Sci. 27(1), 744 (2016)Google Scholar
  24. 24.
    T. Mahalingam, S. Thanikaikarasan, R. Chandramohan, K. Chungc, J.P. Chud, S. Velumanie, J.K. Rhee, Mater. Sci. Eng. B 174(1–3), 236 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity College of Engineering, Anna UniversityTiruchirappalliIndia
  2. 2.Department of PhysicsBharathidasan University Constituent Model Arts and Science College for WomenVeppurIndia

Personalised recommendations