Effect of firing temperature on microstructure and dielectric properties of chromium oxide based glass composite thick films on stainless steel substrate

  • Ghanasham D. Shirke
  • Govind G. Umarji
  • Arjun R. Tarale
  • Vikas L. Mathe
  • Uttam P. Mulik
  • Sunit B. Rane


We report the influence of firing temperature on Al2O3–chromium oxide based (Cr2O3–Bi2O3–B2O3–SiO2–Al2O3) glass composite (named as GC-1 composite) thick films of thickness (27 ± 3) µm deposited onto 0.6 mm thick austenitic grade stainless steel (DIN 1.4301/AISI 304) substrate by screen printing technique, which can be used as a substitute to alumina substrate. Prior to formulation of glass composite, the chromium oxide based glass (named as GC-1) phase was prepared separately by melt-quench technique. X-ray diffraction analysis confirmed amorphous nature of the GC-1 glass. The thermo gravimetric analysis and differential scanning calorimetry of the GC-1 glass shows thermal stability over the temperature range of 20–1000 °C. We observed that the firing temperature significantly influences microstructural and dielectric properties of the GC-1 composite film. The deposited GC-1 composite films onto stainless steel base were fired at temperatures between the range of 550–750 °C, showed the surface resistivity in the range of (1.0–6.9 ± 0.2) × 1012 ohms per square. The microstructure of these composite films recorded using scanning electron microscopy and electrical properties recorded using LCR meter were correlated with each other. The study revealed that the film fired at 600 °C were found to be superior among the samples under investigation in terms of microstructure, stable relative permittivity [36 (± 1)] and low loss tangent [0.02 (± 0.002)] in frequency range of 1–200 kHz, and surface resistivity (~ 5.1 × 1012 ohms per square).


  1. 1.
    M. Prudenziati (ed.), Handbook of Sensors: Thick Film Technology (Elsevier, Amsterdam, 1994)Google Scholar
  2. 2.
    B. Morten, M. Prudenziati, G. De Cicco, A. Bianco, G. Montesperelli, G. Gusmano, Meas. Sci. Technol. 8, 21 (1997)CrossRefGoogle Scholar
  3. 3.
    N. White, J. Turner, Meas. Sci. Technol. 8, 1 (1997)CrossRefGoogle Scholar
  4. 4.
    S. Rane, V. Deshpande, T. Seth, G. Phatak, D. Amalnerkar, R. Aiyer, J. Mater. Sci.: Mater. Electron. 15, 751 (2004)Google Scholar
  5. 5.
    A. Kshirsagar, S. Rane, U. Mulik, D. Amalnerkar, Mater. Chem. Phys. 101, 492 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Jagtap, S. Rane, S. Gosavi, D. Amalnerkar, J. Mater. Sci.: Mater. Electron. 21, 861 (2010)Google Scholar
  7. 7.
    S. Rane, D. Kajale, S. Arbuj, S. Rane, S. Gosavi, J. Mater. Sci. Mater. Electron. 28, 9011 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, J. Mater. Sci.: Mater. Electron. 27(6), 5592 (2016)Google Scholar
  9. 9.
    A. Feng, G. Wu, C. Pan, Y. Wang, J. Nanosci. Nanotechnol. 17(6), 3786 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Dziedzic, P. Osypiuk, W. Steplewski, Solder. Surf. Mt. Technol. 29(1), 54 (2017)CrossRefGoogle Scholar
  11. 11.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mater. Sci.: Mater. Electron. 28, 9, 6544 (2017)Google Scholar
  12. 12.
    C. Pan, J. Zhang, K. Kou, Y. Zhang, G. Wu, Intern. J. Heat Mass Trans. 120, 1 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Jacq, T. Maeder, P. Ryser, J. Eur. Ceram. Soc. 24, 1897 (2004)CrossRefGoogle Scholar
  14. 14.
    L. Fraigi, D. Lupl, L. Malatto, Sens. Actuators A 42, 439 (1994)CrossRefGoogle Scholar
  15. 15.
    R. Maas, M. Koch, N. Harris, N. White, A.G.R. Evans, Mater. Lett. 31, 109 (1997)CrossRefGoogle Scholar
  16. 16.
    K. Arshak, F. Ansari, D. McDonagh, D. Collins, Meas. Sci. Technol. 8, 58 (1997)CrossRefGoogle Scholar
  17. 17.
    K. Arshak, D. Morris, A. Arshak, O. Korostynska, J. Mater. Sci.: Mater. Electron. 17, 767 (2006)Google Scholar
  18. 18.
    N. White, Microelectron. Int. 6(3), 23 (1989)CrossRefGoogle Scholar
  19. 19.
    C. Jacq, T. Maeder, P. Ryser, Sadhana 34, 677 (2009)CrossRefGoogle Scholar
  20. 20.
    T. Maeder, Int. Mater. Rev. 58, 3 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Pawar, R. Ballav, A. Kumar, Manuf. Sci. Technol. 3(1), 10 (2015)Google Scholar
  22. 22.
    V.K. Jain, S.K. Choudhury, K.M. Ramesh, Int. J. Mach. Tools Manuf. 42, 1269 (2002)CrossRefGoogle Scholar
  23. 23.
    H. Sibum, in Titanium and Titanium Alloys, ed. by C. By, Leyens, M. Peters (Wiley, Hoboken, 2003), p. 231Google Scholar
  24. 24.
    P. Srinivasa Rao, P. Ramesh Babu, R. Vijay b, T. Narendrudu, N. Veeraiah, D. Krishna Rao, Mater. Res. Bull. 57, 58 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Diantoro, M.B. Zaini, Z. Muniroh, A. Nasikhudin, Hidayat, J. Phys. 853(1), 012045 (2017)Google Scholar
  26. 26.
    M. Seitovirta, Handbook of Stainless Steel (Outokumpu Oyj, Helsinki, 2013), p. 34Google Scholar
  27. 27.
    ASM International, in Alloy Digest Sourcebook: Stainless Steels, Introduction to Stainless Steels (ASM International, Materials Park, 2000) pp. 1–6Google Scholar
  28. 28.
    Keithley Instruments Inc., in Application Note Series Number 2475 Four-Probe Resistivity and Hall Voltage Measurements with the Model 4200-SCS (Keithley Instruments Inc., Cleveland, 2011), p. 6Google Scholar
  29. 29.
    R. Alias, Sintering Applications, ed. by E. Burcu (InTech, Rijeka, 2013), p. 92Google Scholar
  30. 30.
    K.C. Kao, Dielectric Phenomena in Solids With Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, Amsterdam, 2004), pp. 77, 157Google Scholar
  31. 31.
    J. Yang, M. Shen, L. Fang, Mater. Lett. 59, 3990 (2005)CrossRefGoogle Scholar
  32. 32.
    N. Bonanos, P. Pissis, J.R. Macdonald, Characterization of Materials, ed. by E.N. Kaufmann (Wiley, Hoboken, 2012), p. 1Google Scholar
  33. 33.
    J. Joshi, K. Dixit, M. Joshi, K. Parikh, AIP Conf. Proc. (2016). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Materials for Electronics Technology (C-MET)PuneIndia
  2. 2.Department of PhysicsSavitribai Phule Pune UniversityPune, 411007India

Personalised recommendations