Skip to main content
Log in

Effect of firing temperature on microstructure and dielectric properties of chromium oxide based glass composite thick films on stainless steel substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the influence of firing temperature on Al2O3–chromium oxide based (Cr2O3–Bi2O3–B2O3–SiO2–Al2O3) glass composite (named as GC-1 composite) thick films of thickness (27 ± 3) µm deposited onto 0.6 mm thick austenitic grade stainless steel (DIN 1.4301/AISI 304) substrate by screen printing technique, which can be used as a substitute to alumina substrate. Prior to formulation of glass composite, the chromium oxide based glass (named as GC-1) phase was prepared separately by melt-quench technique. X-ray diffraction analysis confirmed amorphous nature of the GC-1 glass. The thermo gravimetric analysis and differential scanning calorimetry of the GC-1 glass shows thermal stability over the temperature range of 20–1000 °C. We observed that the firing temperature significantly influences microstructural and dielectric properties of the GC-1 composite film. The deposited GC-1 composite films onto stainless steel base were fired at temperatures between the range of 550–750 °C, showed the surface resistivity in the range of (1.0–6.9 ± 0.2) × 1012 ohms per square. The microstructure of these composite films recorded using scanning electron microscopy and electrical properties recorded using LCR meter were correlated with each other. The study revealed that the film fired at 600 °C were found to be superior among the samples under investigation in terms of microstructure, stable relative permittivity [36 (± 1)] and low loss tangent [0.02 (± 0.002)] in frequency range of 1–200 kHz, and surface resistivity (~ 5.1 × 1012 ohms per square).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Prudenziati (ed.), Handbook of Sensors: Thick Film Technology (Elsevier, Amsterdam, 1994)

    Google Scholar 

  2. B. Morten, M. Prudenziati, G. De Cicco, A. Bianco, G. Montesperelli, G. Gusmano, Meas. Sci. Technol. 8, 21 (1997)

    Article  CAS  Google Scholar 

  3. N. White, J. Turner, Meas. Sci. Technol. 8, 1 (1997)

    Article  CAS  Google Scholar 

  4. S. Rane, V. Deshpande, T. Seth, G. Phatak, D. Amalnerkar, R. Aiyer, J. Mater. Sci.: Mater. Electron. 15, 751 (2004)

    CAS  Google Scholar 

  5. A. Kshirsagar, S. Rane, U. Mulik, D. Amalnerkar, Mater. Chem. Phys. 101, 492 (2007)

    Article  CAS  Google Scholar 

  6. S. Jagtap, S. Rane, S. Gosavi, D. Amalnerkar, J. Mater. Sci.: Mater. Electron. 21, 861 (2010)

    CAS  Google Scholar 

  7. S. Rane, D. Kajale, S. Arbuj, S. Rane, S. Gosavi, J. Mater. Sci. Mater. Electron. 28, 9011 (2017)

    Article  CAS  Google Scholar 

  8. G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, J. Mater. Sci.: Mater. Electron. 27(6), 5592 (2016)

    CAS  Google Scholar 

  9. A. Feng, G. Wu, C. Pan, Y. Wang, J. Nanosci. Nanotechnol. 17(6), 3786 (2017)

    Article  CAS  Google Scholar 

  10. A. Dziedzic, P. Osypiuk, W. Steplewski, Solder. Surf. Mt. Technol. 29(1), 54 (2017)

    Article  Google Scholar 

  11. G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mater. Sci.: Mater. Electron. 28, 9, 6544 (2017)

    CAS  Google Scholar 

  12. C. Pan, J. Zhang, K. Kou, Y. Zhang, G. Wu, Intern. J. Heat Mass Trans. 120, 1 (2018)

    Article  CAS  Google Scholar 

  13. C. Jacq, T. Maeder, P. Ryser, J. Eur. Ceram. Soc. 24, 1897 (2004)

    Article  CAS  Google Scholar 

  14. L. Fraigi, D. Lupl, L. Malatto, Sens. Actuators A 42, 439 (1994)

    Article  Google Scholar 

  15. R. Maas, M. Koch, N. Harris, N. White, A.G.R. Evans, Mater. Lett. 31, 109 (1997)

    Article  CAS  Google Scholar 

  16. K. Arshak, F. Ansari, D. McDonagh, D. Collins, Meas. Sci. Technol. 8, 58 (1997)

    Article  CAS  Google Scholar 

  17. K. Arshak, D. Morris, A. Arshak, O. Korostynska, J. Mater. Sci.: Mater. Electron. 17, 767 (2006)

    CAS  Google Scholar 

  18. N. White, Microelectron. Int. 6(3), 23 (1989)

    Article  Google Scholar 

  19. C. Jacq, T. Maeder, P. Ryser, Sadhana 34, 677 (2009)

    Article  CAS  Google Scholar 

  20. T. Maeder, Int. Mater. Rev. 58, 3 (2013)

    Article  CAS  Google Scholar 

  21. P. Pawar, R. Ballav, A. Kumar, Manuf. Sci. Technol. 3(1), 10 (2015)

    Google Scholar 

  22. V.K. Jain, S.K. Choudhury, K.M. Ramesh, Int. J. Mach. Tools Manuf. 42, 1269 (2002)

    Article  Google Scholar 

  23. H. Sibum, in Titanium and Titanium Alloys, ed. by C. By, Leyens, M. Peters (Wiley, Hoboken, 2003), p. 231

    Google Scholar 

  24. P. Srinivasa Rao, P. Ramesh Babu, R. Vijay b, T. Narendrudu, N. Veeraiah, D. Krishna Rao, Mater. Res. Bull. 57, 58 (2014)

    Article  Google Scholar 

  25. M. Diantoro, M.B. Zaini, Z. Muniroh, A. Nasikhudin, Hidayat, J. Phys. 853(1), 012045 (2017)

    Google Scholar 

  26. M. Seitovirta, Handbook of Stainless Steel (Outokumpu Oyj, Helsinki, 2013), p. 34

    Google Scholar 

  27. ASM International, in Alloy Digest Sourcebook: Stainless Steels, Introduction to Stainless Steels (ASM International, Materials Park, 2000) pp. 1–6

    Google Scholar 

  28. Keithley Instruments Inc., in Application Note Series Number 2475 Four-Probe Resistivity and Hall Voltage Measurements with the Model 4200-SCS (Keithley Instruments Inc., Cleveland, 2011), p. 6

    Google Scholar 

  29. R. Alias, Sintering Applications, ed. by E. Burcu (InTech, Rijeka, 2013), p. 92

    Google Scholar 

  30. K.C. Kao, Dielectric Phenomena in Solids With Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, Amsterdam, 2004), pp. 77, 157

    Google Scholar 

  31. J. Yang, M. Shen, L. Fang, Mater. Lett. 59, 3990 (2005)

    Article  CAS  Google Scholar 

  32. N. Bonanos, P. Pissis, J.R. Macdonald, Characterization of Materials, ed. by E.N. Kaufmann (Wiley, Hoboken, 2012), p. 1

    Google Scholar 

  33. J. Joshi, K. Dixit, M. Joshi, K. Parikh, AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4946069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunit B. Rane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirke, G.D., Umarji, G.G., Tarale, A.R. et al. Effect of firing temperature on microstructure and dielectric properties of chromium oxide based glass composite thick films on stainless steel substrate. J Mater Sci: Mater Electron 29, 9871–9878 (2018). https://doi.org/10.1007/s10854-018-9028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9028-x

Navigation