Skip to main content
Log in

Structural, optical and electrical properties of pure and Fe doped V2O5 nanoparticles for junction diode fabrications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural, optical and electrical studies of V2O5 and FexV2O5 (x = 5%) nanostructures synthesized by a wet chemical method have been reported. The synthesized nanostructures were characterized by XRD, SEM–EDX, HRTEM, XPS, UV(DRS), FT-IR, PL, TG–DTA, AC and DC conductivity study’s. The anorthic phase was observed in the XRD patterns of undoped and Fe doped samples which are prepared at low temperature. This anorthic phase was reduced with the heat treatment and gradually transformed into orthorhombic phase in the samples annealed at 600 °C for 1 h. The change in the surface morphology in the present samples from micro-rod to nanorods network seems to be dependent on the substitution of Fe. As observed from the PL analysis that the ultraviolet (UV) emission intensity was found to be decreased and exhibited a blue shift with the increase of Fe concentration. The analysis of AC and DC conductivity measurements recorded at room temperature in the temperature range of 303–403 K, revealed that the activation energy is high for Fe doped V2O5 compared to undoped V2O5. The junction diodes of n-V2O5/p-Si and V2O5:Fe/p-Si was successfully prepared by the nebulizer spray pyrolysis method. The (I–V) characteristics of nonlinear and asymmetric nature revealed the Schottky diode based behavior for pure and doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11, 6–12 (2008)

    Google Scholar 

  2. J. Bullot, O. Gallsis, M. Gauthier, J. Livage, Semiconducting properties of amorphous V2O5 layers deposited from gels. Appl. Phy. Lett. 36, 986–989 (1980)

    CAS  Google Scholar 

  3. Y. Wang, G. Cao, Synthesis and enhanced intercalation properties of nanostructred vanadium oxides. Chem. Mater. 18, 2787–2804 (2006)

    Google Scholar 

  4. V.M. Mohan, B. Hu, W. Qiu, W. Chen, Synthesis, structural, and electrochemical performance of V2O5 nanotubes as cathode material for lithium battery. J. Appl. Electrochem. 63, 2001–2006 (2009)

    Google Scholar 

  5. Z. Wang, J. Chen, X. Hu, Electro-chromic properties of aqueous sol-gel derived vanadium oxide films with different thickness. Thin Solid Films 375, 238–241 (2000)

    CAS  Google Scholar 

  6. I. Pradeep, E. Ranjith Kumar, N. Suriyanarayanan, K. Mohanraj, Ch Srinivas, M.V.K. Mehar, Effect of Al doping concentration on the structural, optical, morphological and electrical properties of V2O5 nanostructures., New J. Chem. 42, 4278 (2018)

    CAS  Google Scholar 

  7. N.C.S. Vieira, W. Avansi, A. Figueiredo, C. Ribeiro, V.R. Mastelaro, F.E.G. Guimares, Ion-sensing properties of 1D vanadium pentoxidenanostrucutes. Nanoscale Res. Lett. 7, 310–315 (2012)

    Google Scholar 

  8. J. Wu, Y. Zhanq, Y. He, C. Liu, W. Guolt, S. Ruan, Application of solution-processed V2O5 in inverted polymer solar cells based on fluorine-doped tin oxide substrate. J. Nanosci. Nanotechnol. 14, 4214–4217 (2014)

    CAS  Google Scholar 

  9. I. Pradeep, E. Ranjith Kumar, N. Suriyanarayanan, K. Mohanraj, Ch Srinivas, M.V.K. Mehar, Effects of doping concentration on structural, morphological, optical and electrical properties of tungsten doped V2O5 nanorods. Ceram. Int. 44, 7098–7109 (2018)

    CAS  Google Scholar 

  10. R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, S. Muthmizh, A. Stephen, V. Narayanan, New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level. Sens. Actuators B 202, 440–447 (2014)

    CAS  Google Scholar 

  11. R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, A. Stephen, V. Narayanan, Doping of Co into V2O5 nanoparticles enhances photo-degradation of methylene blue. J. Alloys Compd. 598, 151–160 (2014)

    CAS  Google Scholar 

  12. G.N. Kryukova, G.A. Zenkovets, N. Pfander, D.-S. Su, R. Schlogl, Synthesis and characterization of the titanium doped nanostructural V2O5. Mater. Sci. Eng. A 343, 8–12 (2003)

    Google Scholar 

  13. R. Suresh, K. Giribabu, L. Vijayalakshmi, A. Stephen, V. Narayanan, Visible light photocatalytic property of ZnO doped V2O5 nanoparticles. AIP Conf. Proc. 1447, 351–352 (2012)

    CAS  Google Scholar 

  14. S.Y. Zhan, C.Z. Wang, K. Nikolowski, H. Ehrenberg, G. Chen, Y.J. Wei, Electrochemical properties of Cr doped V2O5 between 3.8 and 2.0 V. Solid State Ionics 180, 1198–1203 (2009)

    CAS  Google Scholar 

  15. H.X. Li, L.F. Jiao, H.T. Yuan, M. Zho, M. Zhang, Y.M. Wang, High-performance Cu-doped vanadium oxide (CuxV2O5) prepared by rapid precipitation method for rechargeable batteries. Mater. Lett. 61, 101–104 (2007)

    CAS  Google Scholar 

  16. S.W. Liu, W. Wang, L. Zhou, L.S. Zhang, Silver vanadium oxides nanobelts and their chemical reduction to silver nanobelts. J. Cryst. Growth 293, 404–408 (2006)

    CAS  Google Scholar 

  17. R. Suresh, K. Giribabu, V. Narayanan, L. Vijayalakshmi, A. Stephen, Synthesis, characterization and electrochemical sensing properties of Fe doped V2O5 nanoparticles. In: Proceedings of the International Conference on Nanoscience, Engineering and Technology, IEEE, Chennai, pp. 481–484 (2011)

  18. N. Pinna, M. Willinger, K. Weiss, J. Urban, R. Schlogl, Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131–1134 (2003)

    CAS  Google Scholar 

  19. Y. Wnang, Q. Su, C.H. Chen, M.L. Yu, G.J. Han, G.Q. Wang, K. Xin, W. Lan, X.Q. Liu, Low temperature growth of vanadium pentoxide nanomaterials by chemical vapour deposition using VO (acac)2 as precursor. J. Phys. D 43, 183001–185402 (2010)

    Google Scholar 

  20. C.V. Ramana, R.J. Smith, O.M. Hussain, C. M. Julien, on the growth mechanism of pulsed-laser deposited vanadium oxide thin films. Mater. Sci. Eng. B 111, 218–225 (2004)

    Google Scholar 

  21. M. Zeng, H. Yin, K. Yu, Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chem. Eng. J. 188, 64–70 (2012)

    CAS  Google Scholar 

  22. Y. Hirotsu, H. Sato, S. Nagakura, Electron state of Magneli phase V6O11 and V7O13. AIP Conf. Proc. 53, 75–77 (1979)

    CAS  Google Scholar 

  23. H. Mehner, W. Meisel, A. Bruckner, A. York, Fe2O3-V2O5 catalysts by transmission and conversion electron Mossbeuer. Hyperfine Interact. 111, 51–56 (1998)

    CAS  Google Scholar 

  24. S. Pavasupree, Y. Suzuki, A. Kitiyanan, S.P. Art, S. Yoshikawa, Synthesis and characterization of vanadium oxides nanorods. J. Solid State Chem. 178, 2152–2158 (2005)

    CAS  Google Scholar 

  25. J. Farcy, S. Maingot, P. Soudan, J.P. Pereira-Ramos, N. Baffier, Electrochemical properties of the mixed oxide Fe0.11V2O5.16 as a Li intercalation compound. Solid State Ionics 99, 61–69 (1997)

    CAS  Google Scholar 

  26. Z.R. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (100) wafers. Mater. Sci. Eng. B 174, 145–149 (2010)

    CAS  Google Scholar 

  27. R. Mariappan, V. Ponnuswamy, M. Ragavendar, Growth and characterization of chemical bath deposited Cd1–xZnxS thin films. J. Alloys Compd. 509, 7337–7343 (2011)

    CAS  Google Scholar 

  28. M. Gaudon, O. Toulemonde, A. Demourgues, Green coloration of co-doped ZnO explained from structural refinement and bond considerations. Inorg. Chem. 46, 10996–11002 (2007)

    CAS  Google Scholar 

  29. K. Takahasih, S.J. Limmer, Y. Wang, G. Cao, Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electro-deposition. J. Phys. Chem. B 108, 9795–9800 (2004)

    Google Scholar 

  30. M. Ghanashyam Krishna, Y. Debauge, A.K. Bhattacharya, X-ray photoelectron spectroscopy and spectral transmittance study of stoichiometry in sputtered vanadium oxide films. Thin Solid Films 321, 116–122 (1998)

    Google Scholar 

  31. N.S. Mclntyre, D.G. Zetaruk, X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521–1529 (1977)

    Google Scholar 

  32. C.R. Aita, Y. Li Liu, M. Lee Kao, S.D. Hansen, Handbook of inorganic electrochromic materials. J. Appl. Phys. 60, 749–753 (1986)

    CAS  Google Scholar 

  33. G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969)

    Google Scholar 

  34. A.L. Pergament, E.L. Kazakova, G.B. Stefanovich, Optical and electrical properties of vanadium pentoxidexerogel films: modification in electric field and the role of iron transport. J. Phys. D 35, 2187–2195 (2002)

    CAS  Google Scholar 

  35. A. Surca, B. Orel, IR spectroscopy of crystalline V2O5 films in different stages of lithiation. Electrochim. Acta. 44, 3051–3057 (1999)

    CAS  Google Scholar 

  36. Y. Hu, Z. Li, Z. Zhang, D. Meng, Effect of magnetic field on the visible light emission of V2O5 nanorods. Appl. Phys. Lett. 94, 103107–103103 (2009)

    Google Scholar 

  37. S. Shi, Y. Yang, J. Xu, L. Li, X. Zhang, G.-H. Hu, Z.-M. Dang, Structural, optical and magnetic properties of Co-doped ZnO nanorods. J. Alloys Compd. 576, 59–65 (2013)

    CAS  Google Scholar 

  38. A. Dhayal Raj, T. Pazhanivel, P. Suresh kumar, D. Mangalaraj, D. Nataraj, N. Ponpandian, Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537 (2010)

    Google Scholar 

  39. V.K. Saraswat, K. Singh, N.S. Saxena, V. Kishore, T.P. Sharma, P.K. Saraswat, Composition dependence of the electrical conductivity of Se85–xTe15Sbx (x = 2,4,6,8 and 10) glass at room temperature. Curr. Appl. Phys. 6, 14–18 (2006)

    Google Scholar 

  40. H.-S. Xu, Z.-Y. Cheng, Q.M. Zhang, P.-C. Wang, A.G. Macdiarmid, Conduction behavior of doped polyaniline films at high current density regime. J. Polym. Sci. B. 37, 2845–2850 (1999)

    CAS  Google Scholar 

  41. E.H. Rhoderick, R.H. Willams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  42. P. Klason, M.M. Rahman, Q.-H. Hu, O. Nur, R. Turan, M. Willander, Fabrication and characterization of p-Si/n-ZnO hetero-structured junctions. Microelectron. J. 40, 706–710 (2009)

    CAS  Google Scholar 

  43. F. Yakuphanoglu, N. Tugluoglu, S. Karadeniz, Space charge-limited conduction in Ag/p-Si Schottky diode. Physica B 392, 188–191 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Ranjith Kumar or N. Suriyanaranan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep, I., Ranjith Kumar, E., Suriyanaranan, N. et al. Structural, optical and electrical properties of pure and Fe doped V2O5 nanoparticles for junction diode fabrications. J Mater Sci: Mater Electron 29, 9840–9853 (2018). https://doi.org/10.1007/s10854-018-9024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9024-1

Navigation