Structural, optical and electrical properties of pure and Fe doped V2O5 nanoparticles for junction diode fabrications

  • I. Pradeep
  • E. Ranjith Kumar
  • N. Suriyanaranan
  • Ch. Srinivas
  • N. Venkata Rao


Structural, optical and electrical studies of V2O5 and FexV2O5 (x = 5%) nanostructures synthesized by a wet chemical method have been reported. The synthesized nanostructures were characterized by XRD, SEM–EDX, HRTEM, XPS, UV(DRS), FT-IR, PL, TG–DTA, AC and DC conductivity study’s. The anorthic phase was observed in the XRD patterns of undoped and Fe doped samples which are prepared at low temperature. This anorthic phase was reduced with the heat treatment and gradually transformed into orthorhombic phase in the samples annealed at 600 °C for 1 h. The change in the surface morphology in the present samples from micro-rod to nanorods network seems to be dependent on the substitution of Fe. As observed from the PL analysis that the ultraviolet (UV) emission intensity was found to be decreased and exhibited a blue shift with the increase of Fe concentration. The analysis of AC and DC conductivity measurements recorded at room temperature in the temperature range of 303–403 K, revealed that the activation energy is high for Fe doped V2O5 compared to undoped V2O5. The junction diodes of n-V2O5/p-Si and V2O5:Fe/p-Si was successfully prepared by the nebulizer spray pyrolysis method. The (I–V) characteristics of nonlinear and asymmetric nature revealed the Schottky diode based behavior for pure and doped samples.


  1. 1.
    S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11, 6–12 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Bullot, O. Gallsis, M. Gauthier, J. Livage, Semiconducting properties of amorphous V2O5 layers deposited from gels. Appl. Phy. Lett. 36, 986–989 (1980)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, G. Cao, Synthesis and enhanced intercalation properties of nanostructred vanadium oxides. Chem. Mater. 18, 2787–2804 (2006)CrossRefGoogle Scholar
  4. 4.
    V.M. Mohan, B. Hu, W. Qiu, W. Chen, Synthesis, structural, and electrochemical performance of V2O5 nanotubes as cathode material for lithium battery. J. Appl. Electrochem. 63, 2001–2006 (2009)CrossRefGoogle Scholar
  5. 5.
    Z. Wang, J. Chen, X. Hu, Electro-chromic properties of aqueous sol-gel derived vanadium oxide films with different thickness. Thin Solid Films 375, 238–241 (2000)CrossRefGoogle Scholar
  6. 6.
    I. Pradeep, E. Ranjith Kumar, N. Suriyanarayanan, K. Mohanraj, Ch Srinivas, M.V.K. Mehar, Effect of Al doping concentration on the structural, optical, morphological and electrical properties of V2O5 nanostructures., New J. Chem. 42, 4278 (2018)CrossRefGoogle Scholar
  7. 7.
    N.C.S. Vieira, W. Avansi, A. Figueiredo, C. Ribeiro, V.R. Mastelaro, F.E.G. Guimares, Ion-sensing properties of 1D vanadium pentoxidenanostrucutes. Nanoscale Res. Lett. 7, 310–315 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Wu, Y. Zhanq, Y. He, C. Liu, W. Guolt, S. Ruan, Application of solution-processed V2O5 in inverted polymer solar cells based on fluorine-doped tin oxide substrate. J. Nanosci. Nanotechnol. 14, 4214–4217 (2014)CrossRefGoogle Scholar
  9. 9.
    I. Pradeep, E. Ranjith Kumar, N. Suriyanarayanan, K. Mohanraj, Ch Srinivas, M.V.K. Mehar, Effects of doping concentration on structural, morphological, optical and electrical properties of tungsten doped V2O5 nanorods. Ceram. Int. 44, 7098–7109 (2018)CrossRefGoogle Scholar
  10. 10.
    R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, S. Muthmizh, A. Stephen, V. Narayanan, New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level. Sens. Actuators B 202, 440–447 (2014)CrossRefGoogle Scholar
  11. 11.
    R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, A. Stephen, V. Narayanan, Doping of Co into V2O5 nanoparticles enhances photo-degradation of methylene blue. J. Alloys Compd. 598, 151–160 (2014)CrossRefGoogle Scholar
  12. 12.
    G.N. Kryukova, G.A. Zenkovets, N. Pfander, D.-S. Su, R. Schlogl, Synthesis and characterization of the titanium doped nanostructural V2O5. Mater. Sci. Eng. A 343, 8–12 (2003)CrossRefGoogle Scholar
  13. 13.
    R. Suresh, K. Giribabu, L. Vijayalakshmi, A. Stephen, V. Narayanan, Visible light photocatalytic property of ZnO doped V2O5 nanoparticles. AIP Conf. Proc. 1447, 351–352 (2012)CrossRefGoogle Scholar
  14. 14.
    S.Y. Zhan, C.Z. Wang, K. Nikolowski, H. Ehrenberg, G. Chen, Y.J. Wei, Electrochemical properties of Cr doped V2O5 between 3.8 and 2.0 V. Solid State Ionics 180, 1198–1203 (2009)CrossRefGoogle Scholar
  15. 15.
    H.X. Li, L.F. Jiao, H.T. Yuan, M. Zho, M. Zhang, Y.M. Wang, High-performance Cu-doped vanadium oxide (CuxV2O5) prepared by rapid precipitation method for rechargeable batteries. Mater. Lett. 61, 101–104 (2007)CrossRefGoogle Scholar
  16. 16.
    S.W. Liu, W. Wang, L. Zhou, L.S. Zhang, Silver vanadium oxides nanobelts and their chemical reduction to silver nanobelts. J. Cryst. Growth 293, 404–408 (2006)CrossRefGoogle Scholar
  17. 17.
    R. Suresh, K. Giribabu, V. Narayanan, L. Vijayalakshmi, A. Stephen, Synthesis, characterization and electrochemical sensing properties of Fe doped V2O5 nanoparticles. In: Proceedings of the International Conference on Nanoscience, Engineering and Technology, IEEE, Chennai, pp. 481–484 (2011)Google Scholar
  18. 18.
    N. Pinna, M. Willinger, K. Weiss, J. Urban, R. Schlogl, Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131–1134 (2003)CrossRefGoogle Scholar
  19. 19.
    Y. Wnang, Q. Su, C.H. Chen, M.L. Yu, G.J. Han, G.Q. Wang, K. Xin, W. Lan, X.Q. Liu, Low temperature growth of vanadium pentoxide nanomaterials by chemical vapour deposition using VO (acac)2 as precursor. J. Phys. D 43, 183001–185402 (2010)CrossRefGoogle Scholar
  20. 20.
    C.V. Ramana, R.J. Smith, O.M. Hussain, C. M. Julien, on the growth mechanism of pulsed-laser deposited vanadium oxide thin films. Mater. Sci. Eng. B 111, 218–225 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Zeng, H. Yin, K. Yu, Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chem. Eng. J. 188, 64–70 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Hirotsu, H. Sato, S. Nagakura, Electron state of Magneli phase V6O11 and V7O13. AIP Conf. Proc. 53, 75–77 (1979)CrossRefGoogle Scholar
  23. 23.
    H. Mehner, W. Meisel, A. Bruckner, A. York, Fe2O3-V2O5 catalysts by transmission and conversion electron Mossbeuer. Hyperfine Interact. 111, 51–56 (1998)CrossRefGoogle Scholar
  24. 24.
    S. Pavasupree, Y. Suzuki, A. Kitiyanan, S.P. Art, S. Yoshikawa, Synthesis and characterization of vanadium oxides nanorods. J. Solid State Chem. 178, 2152–2158 (2005)CrossRefGoogle Scholar
  25. 25.
    J. Farcy, S. Maingot, P. Soudan, J.P. Pereira-Ramos, N. Baffier, Electrochemical properties of the mixed oxide Fe0.11V2O5.16 as a Li intercalation compound. Solid State Ionics 99, 61–69 (1997)CrossRefGoogle Scholar
  26. 26.
    Z.R. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (100) wafers. Mater. Sci. Eng. B 174, 145–149 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Mariappan, V. Ponnuswamy, M. Ragavendar, Growth and characterization of chemical bath deposited Cd1–xZnxS thin films. J. Alloys Compd. 509, 7337–7343 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Gaudon, O. Toulemonde, A. Demourgues, Green coloration of co-doped ZnO explained from structural refinement and bond considerations. Inorg. Chem. 46, 10996–11002 (2007)CrossRefGoogle Scholar
  29. 29.
    K. Takahasih, S.J. Limmer, Y. Wang, G. Cao, Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electro-deposition. J. Phys. Chem. B 108, 9795–9800 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Ghanashyam Krishna, Y. Debauge, A.K. Bhattacharya, X-ray photoelectron spectroscopy and spectral transmittance study of stoichiometry in sputtered vanadium oxide films. Thin Solid Films 321, 116–122 (1998)CrossRefGoogle Scholar
  31. 31.
    N.S. Mclntyre, D.G. Zetaruk, X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521–1529 (1977)CrossRefGoogle Scholar
  32. 32.
    C.R. Aita, Y. Li Liu, M. Lee Kao, S.D. Hansen, Handbook of inorganic electrochromic materials. J. Appl. Phys. 60, 749–753 (1986)CrossRefGoogle Scholar
  33. 33.
    G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969)CrossRefGoogle Scholar
  34. 34.
    A.L. Pergament, E.L. Kazakova, G.B. Stefanovich, Optical and electrical properties of vanadium pentoxidexerogel films: modification in electric field and the role of iron transport. J. Phys. D 35, 2187–2195 (2002)CrossRefGoogle Scholar
  35. 35.
    A. Surca, B. Orel, IR spectroscopy of crystalline V2O5 films in different stages of lithiation. Electrochim. Acta. 44, 3051–3057 (1999)CrossRefGoogle Scholar
  36. 36.
    Y. Hu, Z. Li, Z. Zhang, D. Meng, Effect of magnetic field on the visible light emission of V2O5 nanorods. Appl. Phys. Lett. 94, 103107–103103 (2009)CrossRefGoogle Scholar
  37. 37.
    S. Shi, Y. Yang, J. Xu, L. Li, X. Zhang, G.-H. Hu, Z.-M. Dang, Structural, optical and magnetic properties of Co-doped ZnO nanorods. J. Alloys Compd. 576, 59–65 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Dhayal Raj, T. Pazhanivel, P. Suresh kumar, D. Mangalaraj, D. Nataraj, N. Ponpandian, Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537 (2010)CrossRefGoogle Scholar
  39. 39.
    V.K. Saraswat, K. Singh, N.S. Saxena, V. Kishore, T.P. Sharma, P.K. Saraswat, Composition dependence of the electrical conductivity of Se85–xTe15Sbx (x = 2,4,6,8 and 10) glass at room temperature. Curr. Appl. Phys. 6, 14–18 (2006)CrossRefGoogle Scholar
  40. 40.
    H.-S. Xu, Z.-Y. Cheng, Q.M. Zhang, P.-C. Wang, A.G. Macdiarmid, Conduction behavior of doped polyaniline films at high current density regime. J. Polym. Sci. B. 37, 2845–2850 (1999)CrossRefGoogle Scholar
  41. 41.
    E.H. Rhoderick, R.H. Willams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988)Google Scholar
  42. 42.
    P. Klason, M.M. Rahman, Q.-H. Hu, O. Nur, R. Turan, M. Willander, Fabrication and characterization of p-Si/n-ZnO hetero-structured junctions. Microelectron. J. 40, 706–710 (2009)CrossRefGoogle Scholar
  43. 43.
    F. Yakuphanoglu, N. Tugluoglu, S. Karadeniz, Space charge-limited conduction in Ag/p-Si Schottky diode. Physica B 392, 188–191 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSri Krishna College of Engineering and TechnologyCoimbatoreIndia
  2. 2.Department of PhysicsDr. N.G.P. Institute of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsGovernment College of TechnologyCoimbatoreIndia
  4. 4.Department of PhysicsSasi Institute of Technology & EngineeringTadepalligudemIndia
  5. 5.Department of Electronics and Communication EngineeringSasi Institute of Technology & EngineeringTadepalligudemIndia

Personalised recommendations