The synergistic role of azeotropic solvent mixtures and atactic polystyrene on the morphology, crystallization and field effect mobility of thin film 6,13-bis(triisopropylsilylethynyl)-pentacene based semiconductors

  • Isam Abdullah
  • He Lan
  • John Morrison
  • Ahmed Alharbi
  • J. Emyr Macdonald
  • Stephen G. Yeates


The effect of anisole/decane binary solvent mixture and the subsequent addition of low wt% aPS on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) thin film morphology is investigated by optical microscopy, AFM and UV–Vis measurements. We show that, over the composition range anisole/decane of 96/4 to 85/15 wt%, the solution maintains an azeotropic composition with the boiling point of the binary mixture remaining constant at 152 °C, and the solvent composition remaining constant during evaporation and drying. It was found that addition of up to 20 wt% decane has little impact on micro-scale crystal morphology but has a significant influence on the growth mode and terrace roughness. The formation of large crystals is explained in terms of the change in solvent, increase in decane content, weakening the solute–solvent interactions and promoting efficient nucleation of the favoured H-aggregates of TIPS-pentacene. The effect of the TIPS-pentacene—aPS ratio up to 20 wt% for drop-cast thin film was similarly investigated. It is found that addition of aPS has a significant effect on both macroscopic crystal properties such as surface coverage, unity of orientation and long range order. It also changes the surface morphology and layer ordering on the nano-scale.



JM was in part supported by funding from the Engineering and Physical Sciences Research Council (UK) via a Flagship Grant (FS/01/01/10) from the Innovative electronic-Manufacturing Research Centre, Loughborough. IA thanks the Iraqi Cultural Attache for sponsorship and Salahaddin University for ongoing support. This work was funded by the Engineering and Physical Sciences Research Council (EP/K039547/1). All data accompanying this publication are directly available within the publication and supplemental information.


  1. 1.
    Y. Yongbo, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld, J. Chen, D. Nordlund, M.F. Toney, J. Huang, Z. Bao, Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014)CrossRefGoogle Scholar
  2. 2.
    G.P. Rigas, M. Shkunov, Solution processable organic single crystals. Polym. Sci. Ser. C 56, 20–31 (2014)CrossRefGoogle Scholar
  3. 3.
    S.K. Gupta, P. Jha, A. Singh, M.M. Chehimi, D.K. Aswal, Flexible organic semiconductor films. J. Mater. Chem. C 3, 8468–8479 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Bi, Z. He, J. Chen, D. Li, Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Adv. 5, 077170 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Fujisaki, D. Takahashi, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, Alignment control of patterned organic semiconductor crystals in short-channel transistor using unidirectional solvent evaporation process. IEEE Trans. Electron Devices 62, 2306–2312 (2015)CrossRefGoogle Scholar
  6. 6.
    J.-F. Chang, T. Sakanoue, Y. Olivier, T. Uemura, M.-B. Madec, S.G. Yeates, J. Cornil, J. Takeya, A. Troisi, H. Sirringhaus, Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011)CrossRefGoogle Scholar
  7. 7.
    R.Z. Rogowski, A. Dzwilewski, M. Kemerink, A.A. Darhuber, Solution processing of semiconducting organic molecules for tailored charge transport properties. J. Phys. Chem. C 115, 11758–11762 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Diao, L. Shaw, Z. Bao, S.C.B. Mannsfeld, Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014)CrossRefGoogle Scholar
  9. 9.
    S.S. Lee, C.S. Kim, E.D. Gomez, B. Purushothaman, M.F. Toney, C. Wang, A. Hexemer, J.E. Anthony, Y.-L. Loo, Controlling nucleation and crystallization in solution-processed organic semiconductors for thin-film transistors. Adv. Mater. 21, 3605–3609 (2009)CrossRefGoogle Scholar
  10. 10.
    S.S. Lee, S. Muralidharan, A.R. Woll, M.A. Loth, Z. Li, J.E. Anthony, M. Haataja, Y.-L. Loo, Understanding heterogeneous nucleation in binary, solution-processed, organic semiconductor thin films. Chem. Mater. 24, 2920–2928 (2012)CrossRefGoogle Scholar
  11. 11.
    G.J. Chae, S.H. Jeong, J.H. Baek, B. Walker, C.K. Song, J.H. Seo, Improved performance in TIPS-pentacene field effect transistors using solvent additives. J. Mater. Chem. C 1, 4216–4221 (2013)CrossRefGoogle Scholar
  12. 12.
    H. Minemawari, T. Yamada, H. Matsui, J.Y. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Inkjet printing of single crystal films. Nature 475, 364–367 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Diao, B.C.K. Tee, G. Giri, J. Xu, D.H. Kim, H.A. Becerril, R.M. Stoltenberg, T.H. Lee, G. Xue, S.C.B. Mannsfeld, Z.N. Bao, Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12, 665–671 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Li, B.C.K. Tee, J.J. Cha, Y. Cui, J.W. Chung, S.Y. Lee, Z. Bao, High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 134, 2760–2765 (2012)CrossRefGoogle Scholar
  15. 15.
    X. Li, B.K.C. Kjellander, J.E. Anthony. C.W.M. Bastiaansen, D.J. Boer. G.H. Gelinck, Azeotropic binary solvent mixtures for preparation of organic single crystals. Adv. Funct. Mater. 19, 3610–3617 (2009)CrossRefGoogle Scholar
  16. 16.
    M.-B. Madec, D. Crouch, G.R. Llorente, T.J. Whittle, M. Geoghegan, S.G. Yeates, Organic field effect transistors from ambient solution processed low molar mass semiconductor-insulator blends. J. Mater. Chem. 18, 3230–3236 (2008)CrossRefGoogle Scholar
  17. 17.
    M.M. Ibrahim, A.C. Maciel, C.P. Watson, M.-B. Madec, S.G. Yeates, D.M. Taylor, Thermo-mechanical stabilisation of a crystalline organic semiconductor for robust large area electronics. Org. Electron. 11, 1234–1241 (2010)CrossRefGoogle Scholar
  18. 18.
    M.-B. Madec, P.J. Smith, A. Malandraki, N. Wang, J.G. Korvink, S.G. Yeates, Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. J. Mater. Chem. 20, 9155–9160 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Smith, R. Hamilton, Y. Qi, A. Kahn, D.D.C. Bradley, M. Heeney, M.I. McCulloch, T.D. Anthopoulos, The influence of film morphology in high-mobility small-molecule: polymer blend organic transistors. Adv. Funct. Mater. 20, 2330–2337 (2010)CrossRefGoogle Scholar
  20. 20.
    Y. Kim, J.E. Whitten, T.M. Swager, High ionization potential conjugated polymers. J. Am. Chem. Soc. 127, 12122–12130 (2005)CrossRefGoogle Scholar
  21. 21.
    J.E. Anthony, J.S. Brooks, D.L. Eaton, S.R. Parkin, Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001)CrossRefGoogle Scholar
  22. 22.
    S.K. Park, T.N. Jackson, J.E. Anthony, D.A. Mourey, High mobility solution processed 6,13-bis(triisopropyl-silylethynyl)pentacene organic thin film transistors. Appl. Phys. Lett. 91, 063514 (2007)CrossRefGoogle Scholar
  23. 23.
    C.M. Hansen, Hansen Solubility Parameters: A User’s Handbook, 2nd edn. (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  24. 24.
    B.S. Ong, Y.L. Wu, P. Liu, in Design of high-performance regioregular polythiophenes for organic thin-film transistors, Proc. IEEE, vol. 93 (2005) pp. 1412–1419Google Scholar
  25. 25.
    K. Takazawa, Y. Kitahama, Y. Kimura, G. Kido, Optical waveguide self-assembled from organic dye molecules in solution. Nano Lett. 5, 1293–1296 (2005)CrossRefGoogle Scholar
  26. 26.
    W.H. Lee, D.H. Kim, Y. Jang, J.H. Cho, M. Hwang, Y.D. Park, Y.H. Kim, J.I. Han, K. Cho, Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor. Appl. Phys. Lett. 90, 132104–132106 (2007)CrossRefGoogle Scholar
  27. 27.
    B. Akkerman, H. Li, Z. Bao, Fabrication of organic semiconductor crystalline thin films and crystals from solution by confined crystallization. Org. Electron. 13, 235–243 (2012)CrossRefGoogle Scholar
  28. 28.
    C. Pitsalidis, N. Kalfagiannis, N.A. Hastas, P.G. Karagiannidis, C. Kapnopoulos, A. Ioakeimidis, S. Logothetidis, High performance transistors based on the controlled growth of triisopropylsilylethynyl-pentacene crystals via non-isotropic solvent evaporation. RSC Adv. 4, 20804–20813 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Isam Abdullah
    • 1
  • He Lan
    • 2
  • John Morrison
    • 2
  • Ahmed Alharbi
    • 2
  • J. Emyr Macdonald
    • 1
  • Stephen G. Yeates
    • 2
  1. 1.School of Physics and AstronomyCardiff UniversityCardiffUK
  2. 2.Organic Materials Innovation Centre (OMIC), School of ChemistryThe University of ManchesterManchesterUK

Personalised recommendations