Skip to main content
Log in

Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We analysed the variation and effect of oxygen vacancies on the structural, dielectric and magnetic properties in case of Mn (4%) and Co (1, 2 and 4%) co-doped ZnO nanoparticles (NPs), synthesized by chemical precipitation route and annealed at 750 °C for 2 h. From the XRD, the calculated average crystallite size increased from15.30 ± 0.73 nm to 16.71 ± 012 nm, when Co content is increased from 1 to 4%. Enhancement of dopants (Mn, Co) introduced more and more oxygen vacancies to ZnO lattice confirmed from EDX and XPS. The high-temperature annealing leads to reduction of the dielectric properties due to enhancement in grain growth (large grain volume and lesser number of grain boundaries) with the incorporation of Co and Mn ions into the ZnO lattice. The electrical conductivity of the Mn doped and (Mn, Co) co-doped ZnO samples were enhanced due to increase in the volume of conducting grains and charge density (liberation of trapped charge carriers in oxygen vacancies and free charge carriers at higher frequencies). The Mn-doped and (Mn, Co) co-doped ZnO NPs show ferromagnetic (FM) behaviour. The saturation and remnant magnetizations (Ms and Mr) elevates from (0.235 to 1.489) × 10−2 and (0.12 to 0.27) × 10−2 emu/g while Coercivity (Hc) reduced from 97 to 36 Oe with enhancement in the concentration of dopants in ZnO matrix. Oxygen vacancies were found to be the main reason for room-temperature ferromagnetism (RTFM) in the doped and co-doped ZnO NPs. The results show that the enhanced dielectric and magnetic properties of Mn doped and (Mn, Co) co-doped ZnO is strongly correlated with the concentration of oxygen vacancies. The observed enhanced RTFM, dielectric properties and electrical conductivity makes TM doped ZnO nanoparticles suitable for spintronics, microelectronics and optoelectronics based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.M. Hao, S. Lou, S. Zhou, Y. Wang, X. Chen, G. Zhu, R.N. Yuan, L. Ning, J. Nanopart. Res. 14, 659 (2012)

    Google Scholar 

  2. G.A. Prinz, Science 282, 1660 (1998)

    CAS  Google Scholar 

  3. Y. Koseoglu, Supercond. Nov. Magn. 26, 485–489 (2013)

    Google Scholar 

  4. L. Ping, S. Wang, J. Li, Y. Wei, J Lumin. 132, 220–225 (2012)

    Google Scholar 

  5. W. Prellier, A. Fouchet, B. Mercey, J. Phys. Condens. Matter 15, R1583 (2003)

    CAS  Google Scholar 

  6. W. Xuetao, Z. Liping, J. Alloys Compd. 509, 3282–3285 (2011)

    Google Scholar 

  7. J.L. Fu, X. Pen, S. Yan, Y. Gong, Y. Tan, R. Liang, R. Du, X. Xing, J. Alloys Compd. 558, 212–221 (2013)

    CAS  Google Scholar 

  8. Y.M. Hao, S. Lou, S. Zhou, Y. Wang, X. Chen, G. Zhu, R.N. Yuan, L. Ning, Nanoscale Res. Lett. 7, 100 (2012)

    Google Scholar 

  9. A. Stroppa, X. Duan, M. Peressi, Mater. Sci. Eng. B 25, 217–221 (2006)

    Google Scholar 

  10. Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Appl. Phys. Lett. 83, 4020–4022 (2003)

    CAS  Google Scholar 

  11. Y. Ohno, D.K. Young, B. Beshoten, F. Matsukura, H. Ohno, D.I. Awschalom, Nature 402, 790 (1999)

    CAS  Google Scholar 

  12. Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 75:035322 (2007)

    Google Scholar 

  13. C. Klingshirn, Phys. Status Solidi B 71, 547–556 (1975)

    CAS  Google Scholar 

  14. X.Y. Xu, C.B. Cao, J. Magn. Magn. Mater. 321, 2216–2219 (2009)

    CAS  Google Scholar 

  15. T. Dietl, Nat. Mater. 9, 965974 (2010)

    Google Scholar 

  16. L.L. Sun, F.W. Yan, H.X. Zhang, J.X. Wang, Y.P. Zeng, G.H. Wang, J.M. Li, Appl. Surf. Sci. 255, 7451–7454 (2009)

    CAS  Google Scholar 

  17. G. Husnain, F. Tao, S.D. Yao, Physica B 405, 2340 (2010)

    CAS  Google Scholar 

  18. Z. Lu, H.S. Hsu, Y. Tzeng, J.C.A. Huang, Appl. Phys. Lett. 94, 152507 (2009)

    Google Scholar 

  19. N.G. Szwacki, J.A. Majewski, T. Dietl, Phys. Rev. B 83, 184417 (2011)

    Google Scholar 

  20. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715–9725 (2014)

    CAS  Google Scholar 

  21. Y.M. Hao, S.Y. Lou, S.M. Zhou, R.J. Yuan, G.Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 100 (2012)

    Google Scholar 

  22. G.K. Ghosh, S. Malkhandi, M.K. Mitra, K.K. Chattopadhyay, J. Ph ys. D 41, 245113 (2008)

    Google Scholar 

  23. P. Lommens, K. Lambert, F. Loncke, D.D. Muynck, T. Balkan, F. Vanhaecke, H. Vrielinck, C. Freddy, H. Zeger, Chem Phys Chem 9(3), 484–491 (2008)

    CAS  Google Scholar 

  24. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, J. Mater. Sci. Mater. Electron. 23, 2673–2679 (2017)

    Google Scholar 

  25. R. Khan, Zulfiqar, Y. Zaman, J. Mater. Sci. Mater. Electron. 27, 4003–4010 (2016)

    CAS  Google Scholar 

  26. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, J. Mater. Sci. Mater. Electron. 27, 7725–7730 (2016)

    CAS  Google Scholar 

  27. R. Khan, Zulfiqar, M.U. Rahman, S. Fashu, Z.U. Rehman, J. Mater. Sci. Mater. Electron. 28, 10122–10130 (2017)

    CAS  Google Scholar 

  28. M.E. Abrishani, S.M. Hosseini, E. Attaran, A. Kampanay, Phys. Status C 7, 1595–1598 (2010)

    Google Scholar 

  29. S. Fabbiyola, L. JohnKennedy, A.A. Dakhel, M. Bououdina, J. Judith Vijaya, T. Ratnaji, J. Mol. Struct. 1109, 89–96 (2016)

    CAS  Google Scholar 

  30. D. Neena, A.H. Shah, K. Deshmukh, H. Ahmad, D.J. Fu, K.K. Kondamareddy, P. Kumar, R.K. Dwivedi, V. Sing, (2016) Eur. Phys. J. D 70, 53

    Google Scholar 

  31. R. Khan, Zulfiqar, S. Fashu, Y. Zaman, J. Mater. Sci. Mater. Electron. 27, 5960–5966 (2016)

    CAS  Google Scholar 

  32. X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Adv. Mater. 17, 1661–1665 (2005)

    CAS  Google Scholar 

  33. Zulfiqar, Y. Yuan, Q. Jiang, J. Yang, L. Feng, W. Wang, Z. Ye, J. Lu, J. Mater. Sci. Mater. Electron. 27, 9541–9549 (2016)

    CAS  Google Scholar 

  34. Zulfiqar, Y. Yuan, J. Yang, W. Wang, Y. Zhizhen, L. Jianguo, Mater. Sci. Mater. Electron. 27, 12119–12127 (2016)

    CAS  Google Scholar 

  35. Zulfiqar, Y. Yuan, J. Yang, W. Wang, Y. Zhizhen, L. Jianguo, Ceram. Int. 42, 17128–17136 (2016)

    CAS  Google Scholar 

  36. Zulfiqar, R. Khan, Y. Yuan, Z. Iqbal, J. Yang, W. Wang, Z. Ye, J. Lu, J. Mater. Sci. Mater. Electron. 28, 4625–4636 (2017)

    CAS  Google Scholar 

  37. R. Khan, M. Fang, Chin. Phys. B 24, 127803 (2015)

    Google Scholar 

  38. R. Khan, Zulfiqar, M.U. Rahman, Z.U. Rehman, S. Fashu, J. Mater. Sci. Mater. Electron. 27, 10532–10540 (2016)

    CAS  Google Scholar 

  39. Zulfiqar, R. Khan, M.U. Rahman, Z. Iqbal, J. Mater. Sci. Mater. Electron. 27, 12490–12498 (2016)

    CAS  Google Scholar 

  40. R. Khan, S. Fashu, Z.U. Rehman, J. Mater. Sci. Mater. Electron. 28, 4333–4339 (2017)

    CAS  Google Scholar 

  41. R. Khan, Zulfiqar, S. Fashu, J. Mater. Sci. Mater. Electron. 29, 32–37 (2018)

    CAS  Google Scholar 

  42. T. Prodromakis, C. Papavassiliou, Appl. Surf. Sci. 225, 6989–6994 (2009)

    Google Scholar 

  43. A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331‒335 (2013)

    Google Scholar 

  44. J. Hn, Z. Zhu, Appl. Phys. Lett. 89, 031107 (2006)

    Google Scholar 

  45. F. Gu, S.F. Wang, M.K. Lu, G.L. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004)

    CAS  Google Scholar 

  46. P.S. Sz, Y.C. Lin, Phys. Chem. Mater. 82, 295–300 (2003)

    Google Scholar 

  47. O. Pakma, N. Serinl, T. Serin, S. Altinda, J. Phys. D 41, 215103 (2008)

    Google Scholar 

  48. R. Elilarassi, G. Chandrasekaran, Optoelectron. Lett 8, 109–112 (2012)

    Google Scholar 

  49. Y. Lin, D. Jiang, F. Lin, W. Shi, M. Xueming, J. Alloys Compd. 436, 30–33 (2007)

    CAS  Google Scholar 

  50. Z.M. Tian, S.L. Yuan, J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, J. Alloys Compd. 466, 26–30 (2008)

    CAS  Google Scholar 

  51. C. Gao, F.T. Lin, X. Zhou, W. Shi, A. Liu, J. Alloys Compd. 565, 154–158 (2013)

    CAS  Google Scholar 

  52. K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Phys. Rev. Lett. 97, 037203–037204 (2006)

    Google Scholar 

  53. S. Yin, Phys. Rev. B 73, 224408–224408 (2015)

    Google Scholar 

  54. T. Fukumura, Appl. Phys. Lett. 78, 958–960 (2001)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Higher Education Commission of Pakistan under START-UP RESEARCH GRANT PROGRAM (Grant No: 21-1525/SRGP/R&D/HEC/2017) and (Grant No: 21-1732/SRGP/R&D/HEC/2017), the Fundamental Research Funds for the HEC Pakistan. Also thanks to Higher Education Research Endowment Fund (HEREF 96) KPK i.e., Project Management Unit, Higher Education Department Government of Khyber Pakhtunkhwa for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajwali Khan or Zulfiqar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar, Levartoski de Araujo, C.I. et al. Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures. J Mater Sci: Mater Electron 29, 9785–9795 (2018). https://doi.org/10.1007/s10854-018-9018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9018-z

Navigation