Controlling the structural, microstructure and magnetic properties of barium W-type hexaferrite elaborated using tartaric acid precursor strategy

  • M. M. Hessien
  • D. A. Rayan
  • M. H. H. Mahmoud
  • A. Alhadhrami
  • M. M. Rashad
Article
  • 35 Downloads

Abstract

In this study, barium W-type hexaferrite (BaCo2Fe16O27) nanopowders have purposefully fabricated through tartaric acid precursor method using inexpensive starting materials. In this regards, the impact of the synthesis conditions namely the annealing temperature and the Ba:Co molar ratio on the crystal structure, crystallite size, microstructure and magnetic structure was explored using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. For instance, well crystalline W-type hexaferrite was realized for the precursors annealed at a low temperature of 1100 °C for 2 h using two different Ba:Co molar ratios of 1.1:2.2 and 1.2:2.4. The crystallite size, the lattice constant, the aspect ratio as well as the unit cell volume were substantially affected with the Ba:Co molar ratio and the annealing temperature. Remarkably, the morphology of hexaferrite powders can be controlled by adjusting the annealing temperature and the Ba:Co molar ratio. Clearly, the microstructure of the formed powders was improved to a hexagonal platelet-like structure by raising the annealing temperature. Eventually, maximum saturation magnetization Ms = 72.3 emu/g was accomplished for W-hexaferrite particles obtained with Ba:Co molar ratio 1.1:2.2 annealed at 1350 °C for 2 h. Wide coercivities (196–1097 Oe) were achieved at the different synthesis conditions.

Notes

Acknowledgements

The authors would like to extend their truthful appreciation to the Deanship of Scientific Research at Taif University, Saudi Arabia for its financial support of this research through the research Group Projects No. 4387-436-1.

References

  1. 1.
    H. Bayrakdar, J. Alloys Compd. 683, 346–356 (2016)CrossRefGoogle Scholar
  2. 2.
    A.R. Farhadizadeh, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, J. Magn. Magn. Mater. 382, 233–236 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.P. Wu, C.K. Ong, G.Q. Lin, Z.W. Li, J. Phys. D 39, 2915–2919 (2006)CrossRefGoogle Scholar
  4. 4.
    M.M. Rashad, M. Rasly, H.M. El-Sayed, A.A. Sattar, I.A. Ibrahim, Appl. Phys. A 112, 963–973 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Wang, Q.W. Chen, C. Zeng, B.Y. Hou, Adv. Mater. 16, 137 (2004)CrossRefGoogle Scholar
  6. 6.
    M.M. Rashad, M. Rasly, I.A. Ibrahim, H.M. El-Sayed, A.A. Sattar, J. Korean Phys. Soc. 63(3), 821–825 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Sanad, M.M. Rashad, Intern. J. Min. Metall. Mater. 23(9), 991 (2016)CrossRefGoogle Scholar
  8. 8.
    M.R. Meshram, K. Nawal, B. Agrawal, P.S. Sinha, Misra, J. Magn. Magn. Mater. 271, 207–214 (2004)CrossRefGoogle Scholar
  9. 9.
    R.C. Pullar, Prog. Mater Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  10. 10.
    F. Guo, W. Zi, G. Ji, L. Zou, S. Can, J. Polym. Res. 22, 48 (2015)CrossRefGoogle Scholar
  11. 11.
    D. Basandrai, R.K. Bedi, A. Dhami, J. Sharma, S.B. Narang, K. Pubby, A.K. Srivastava, Chin. Phys. Lett. 34, 044101 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Tyagi, H. Baskey, R. Agarwala, V. Agarwala, T. Shami, J. Electron. Mater. 40, 2004–2014 (2011)CrossRefGoogle Scholar
  13. 13.
    P.B. Braun, Philips Tech. Res. Rep. 12, 491 (1957)Google Scholar
  14. 14.
    G.R. Gordani, M. Mohseni, A. Ghasemi, S.R. Hosseini, Mater. Res. Bull. 76, 187–194 (2016)CrossRefGoogle Scholar
  15. 15.
    E. Pollert, Crystal chemistry of magnetic oxides part 2: Hexagonal ferrites. Prog. Cryst. Growth Charact. 11, 155–205 (1985)CrossRefGoogle Scholar
  16. 16.
    C.S. Wang, X.W. Qi, L.T. Li, J. Zhou, X.H. Wang, Z.X. Yue, Mater. Sci. Eng. B 99, 270 (2003)CrossRefGoogle Scholar
  17. 17.
    D. Lisjak, A. Znidar, A. Sztanislav, M. Drofenik, J. Eur. Ceram. Soc. 28, 2057 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Kojima, in Ferromagnetic Materials, vol. 3, ed. by E.P. Wohlfarth. (North Holland, Amsterdam, 1982), pp. 305–391Google Scholar
  19. 19.
    A.K. Nikumbh, S.B. Misal, D.V. Nighot, P.A. Nagawade, N.J. Karale, A.S. Deshpande, G.S. Gugale, A.V. Nagawade, J. Alloys Compd. 683, 346–356 (2016)CrossRefGoogle Scholar
  20. 20.
    M.G. Hasab, S.A.S. Ebrahimi, A. Badiei, J. Magn. Magn. Mater. 316, e13–e15 (2007)CrossRefGoogle Scholar
  21. 21.
    L. Deng, L. Ding, K. Zhou, S. Huang, Z. Hu, B. Yang, J. Magn. Magn. Mater. 323, 1895–1898 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Cao, X. Guo, J. Meng, J. Sol Gel Sci. Technol. 85(1), 149–157 (2018)CrossRefGoogle Scholar
  23. 23.
    K. Huang, X. Liu, S. Feng, Z. Zhang, J. Yu, X. Niu, F. Lv, X. Huang, J. Magn. Magn. Mater. 379, 16–21 (2015)CrossRefGoogle Scholar
  24. 24.
    G. Reza, G. Marzieh, M. Ali, G. Sayed, R. Hosseini, Mater. Res. Bull. 76, 187–194 (2016)CrossRefGoogle Scholar
  25. 25.
    M.J. Iqbal, R.A. Khan, S. Mizukami, T. Miyazaki, Ceram. Inter. 38, 4097–4103 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Sun, Z. Zheng, L. Liang, K. Sun, Y. Song, S. Zhao, J. Mater. Sci. Mater. Electron. 26(12), 9970–9976 (2015)CrossRefGoogle Scholar
  27. 27.
    J.F. Wang, C.B. Ponton, R. Grössinger, I.R. Harris, J. Alloy. Compd. 369, 170–177 (2004)CrossRefGoogle Scholar
  28. 28.
    R.B. Jotania, R.B. Khomane, A.S. Deshpande, C.C. Chauhan, B.D. Kulkarni, J. Sci. Res. 1, 1–13 (2009)Google Scholar
  29. 29.
    E.P. Naiden, V.A. Zhuravlev, R.V. Minin, V.I. Suslyaev, V.I. Itin, E.Y. Korovin, Inter. J. Self Prop. High. Temp. Synth. 24(3), 148–151 (2015)CrossRefGoogle Scholar
  30. 30.
    W. Lee, Y.-K. Hong, M. Choi, H. Won, J. Lee, G. LaRochelle, S. Bae, IEEE Magn. 8, 5109204 (2017)Google Scholar
  31. 31.
    M.M. Rashad, I.A. Ibrahim, J. Magn. Magn. Mater. 323(16), 2158–2164 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Rasly, M.M. Rashad, J. Magn. Magn. Mater. 337–338, 58–64 (2013)CrossRefGoogle Scholar
  33. 33.
    R.A. Khan, S. Mizukami, A.M. Khan, B. Ismail, A. R. Khan, T. Miyazaki, J. Alloys Compd. 637, 197–202 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Xu, H. Zou, H. Li, G. Li, S. Gan, G. Hong, J. Alloys Compd. 490, 552 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Yan, L. Liu, E. Zhou, J. Alloys Compd. 415, 204 (2006)CrossRefGoogle Scholar
  36. 36.
    X. Niu, Y. Liu, M. Li, B. Wu, H. Li, J. Electron. Mater. 46(7), 4299–4303 (2017)CrossRefGoogle Scholar
  37. 37.
    S.H. Mahmood, Q. Al Sheyab, I. Bsoul, O. Mohsen, A. Awadallah, Curr. Appl. Phys. 18(5), 590–598 (2018)CrossRefGoogle Scholar
  38. 38.
    R.C. Pullar, I.K. Bdikinb, A.K. Bhattacharya, J. Eur. Cer. Soc. 32, 905–913 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Ahmad, R. Grössinger, I. Ali, I. Ahmad, M.U. Rana, J. Alloys Compd. 577, 382–388 (2013)CrossRefGoogle Scholar
  40. 40.
    M.M. Hessien, M. Radwan, M.M. Rashad, J. Anal. Appl. Pyrol. 78(2), 282–287 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. M. Hessien
    • 1
    • 2
  • D. A. Rayan
    • 2
  • M. H. H. Mahmoud
    • 1
    • 2
  • A. Alhadhrami
    • 1
  • M. M. Rashad
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  2. 2.Central Metallurgical Research and Development Institute (CMRDI)HelwanEgypt

Personalised recommendations