Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract

  • P. A. Luque
  • C. A. Soto-Robles
  • O. Nava
  • C. M. Gomez-Gutierrez
  • A. Castro-Beltran
  • H. E. Garrafa-Galvez
  • A. R. Vilchis-Nestor
  • A. Olivas


This work addresses a low cost, non-toxic green synthesis of zinc oxide nanoparticles prepared using different amounts of Citrus sinensis extract. The zinc oxide nanoparticles presented the Zn–O bond at 618 cm−1, a crystalline growth in a purely hexagonal wurtzite crystal structure, and different size and shape homogeneity depending on the amount of extract used. The band gap of the ZnO was at around 2.91 eV for all samples. The photocatalytic degradation studies were carried out using methylene blue with the zinc oxide nanoparticles under UV light; where sample M2 presented a degradation of around 83% at 120 min. These results presented a better degradation rate than commercially available zinc oxide nanoparticles.



The authors acknowledge the support of the Universidad Autónoma de Baja California through the 492 project, as well as the UNAM-DGAPA-PAPIIT Grant IG100117.


This work was financial supported by CONACYT (Grant No. 280518).


  1. 1.
    S. Natarajan, H.C. Bajaj, R.J. Tayade, J. Eviron. Sci. 65, 201 (2018)CrossRefGoogle Scholar
  2. 2.
    D. Sudha, P. Sivakumar, Chem. Eng. Process. 97, 112 (2015)CrossRefGoogle Scholar
  3. 3.
    S.T. Fardood, A. Ramazani, S.W. Joo, J. Appl. Catal. Res. 12, 8 (2018)Google Scholar
  4. 4.
    M. Sorbiun, E.S. Mehr, A. Ramazani, S.T. Fardood, Int. J. Environ. Res. 12, 29 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Kumar, G. Kumar, A. Umar, Nanosci. Nanotechnol. Lett. 6, 631 (2014)CrossRefGoogle Scholar
  6. 6.
    K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428 (2016)CrossRefGoogle Scholar
  7. 7.
    V.V. Gawade, N.L. Gavade, H.M. Shinde, S.B. Babar, A.N. Kadam, K.M. Garadkar‎, J. Mater. Sci. Mater. Electron. 1, 1 (2017)Google Scholar
  8. 8.
    P. Camarda, F. Messina, L. Vaccaro, S. Agnello, G. Buscarino, R. Schneider, M. Cannas, ‎Phys. Chem. Chem. Phys. 18, 16237 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Azizi, M.B. Ahmad, F. Namvar, R. Mohamad, Mater. Lett. 116, 275 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Rathnasamy, P. Thangasamy, R. Thangamuthu, S. Sampath, V. Alagan, J. Mater. Sci. Mater. Electron. 1, 1 (2017)Google Scholar
  11. 11.
    B. Siripireddy, B.K. Mandal, Adv. Powder Technol. 28, 785 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, F. Peng, Green Chem. Lett. Rev. 8, 59 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Karnan, S.A.S. Selvakumar, J. Mol. Struct. 1125, 358 (2016)CrossRefGoogle Scholar
  14. 14.
    C.A. Soto-Robles, O.J. Nava, A.R. Vilchis-Nestor, A. Castro-Beltrán, C.M. Gómez-Gutiérrez, E. Lugo-Medina, P.A. Luque, J. Mater. Sci. Mater. Electron. 1, 1 (2017)Google Scholar
  15. 15.
    M.L. Chen, D.J. Yang, S.C. Liu, Int. J. Food Sci. Technol. 46, 1179 (2011)CrossRefGoogle Scholar
  16. 16.
    O.K. Chun, D.O. Kim, N. Smith, D. Schroeder, J.T. Han, C.Y. Lee, J. Sci. Food Agric. 85, 1715 (2005)CrossRefGoogle Scholar
  17. 17.
    J.M. Lü, P.H. Lin, Q. Yao, C. Chen, J. Cell Mol. Med. 14, 840 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, K. Srinivasan, Spectrochim. Acta A 79, 594 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Thakur, N. Karak, N. Green, Carbon 50, 5331 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Çolak, E. Karakose, J. Alloys Compd. 690, 658 (2017)CrossRefGoogle Scholar
  21. 21.
    M.R. Loizzo, R. Tundis, M. Bonesi, F. Menichini, D. De Luca, C. Colica, F. Menichini, J. Sci. Food Agric. 92, 2960 (2012)CrossRefGoogle Scholar
  22. 22.
    R. Yuvakkumar, J. Suresh, B. Saravanakumar, A.J. Nathanael, S.I. Hong, V. Rajendran, Spectrochim. Acta A 137, 250 (2015)CrossRefGoogle Scholar
  23. 23.
    O.J. Nava, P.A. Luque, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, M.L. Mota-González, A. Olivas, J. Mol. Struct. 1134, 121 (2017)CrossRefGoogle Scholar
  24. 24.
    S.M. Lam, J.A. Quek, J.C. Sin, Mater. Lett. 195, 34 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Zhang, Y. Chen, S. Zhang, C. Qiu, Sep. Purif. Technol. 172, 236 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Lahmar, F. Setifi, A. Azizi, G. Schmerber, A. Dinia, J. Alloys Compd. 718, 36 (2017)CrossRefGoogle Scholar
  27. 27.
    N. Kamarulzaman, M.F. Kasim, R. Rusdi, Nanoscale Res. Lett. 10, 346 (2015)CrossRefGoogle Scholar
  28. 28.
    R.D.C. Soltani, A. Rezaee, A.R. Khataee, M. Safari, J. Ind. Eng. Chem. 20, 1861 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung, G. Katona, Mater. Sci. Semicond. Process. 39, 23 (2015)CrossRefGoogle Scholar
  30. 30.
    A.R. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour, S.W. Joo, Appl. Catal. A 488, 160 (2014)CrossRefGoogle Scholar
  31. 31.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 4, 1 (2014)Google Scholar
  32. 32.
    M. Azarang, A. Shuhaimi, R. Yousefi, S.P. Jahromi, RSC Adv. 5, 21888 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de IngenieríaArquitectura y Diseño-Universidad Autónoma de Baja CaliforniaEnsenadaMexico
  2. 2.Facultad de Ingeniería MochisUASLos MochisMexico
  3. 3.Centro Conjunto de Investigación en Química SustentableUAEM-UNAMTolucaMexico
  4. 4.Centro de Nanociencias y NanotecnologíaUNAMEnsenadaMexico

Personalised recommendations