Advertisement

Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye

  • Ming Qin
  • Kejun Lin
  • Qin Shuai
  • Hongsheng Liang
  • Junsheng Peng
  • Chao Mao
  • Yuge Ji
  • Hongjing Wu
Article

Abstract

A novel single-phase Ni0.9Zn0.1O was synthesized by using a simple hydrothermal method. The crystal structure, morphology and element distribution have been analyzed by X-ray diffraction, transmission electron microscopy and EDS mapping. The results showed that 2D graphene-like and porous structure was successfully grown on the surface of Ni0.9Zn0.1O. The single-phase Ni0.9Zn0.1O was further applied to remove Congo red (CR), which was used as a model of organic pollutants in aqueous solution. Unexpectedly, it is found that the graphene-like single-phase Ni0.9Zn0.1O has the superior adsorption capacity for CR in aqueous solution. The adsorption isotherms and kinetics follow Langmuir and pseudo-second order models, respectively. This study provides great promise of as-prepared Ni0.9Zn0.1O powders as absorbent for removal of organic dyes.

Notes

Acknowledgements

Financial support was provided by National Natural Science Foundation of China (Nos. 50771082, 60776822). The Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JQ5116).

References

  1. 1.
    Q.S. Xie, Y.T. Ma, D.Q. Zeng, L.S. Wang, G.H. Yue, D.L. Peng, Sci. Rep. 5, 8351 (2015)CrossRefGoogle Scholar
  2. 2.
    L. Qiao, X.H. Wang, L. Qiao, X.L. Sun, X.W. Li, Y.X. Zheng, D.Y. He, Nanoscale 5, 3037–3042 (2013)CrossRefGoogle Scholar
  3. 3.
    M.S. Wu, H.W. Chang, J. Phys. Chem. C 117, 2590–2599 (2013)CrossRefGoogle Scholar
  4. 4.
    G.Y. Huang, X.Y. Guo, X. Cao, Q.H. Tian, H.Y. Sun, Nano Energy 28, 338–345 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Fomekong, P. Tsobnang, D. Magnin, S. Hermans, A. Delcorte, J. Ngolui, J. Solid State Chem. 230, 381–389 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Feng, Z. Jia, Q. Yu, H. Zhang, G. Wu, Nano. (2018).  https://doi.org/10.1142/S1793292018500376 Google Scholar
  7. 7.
    C. Shi, J. Zhu, X. Shen, F. Chen, F. Ning, H. Zhang, Y. Long, X. Ning, J. Zhao, RSC Adv. 8(8), 4072–4077 (2018)CrossRefGoogle Scholar
  8. 8.
    A. Feng, Z. Jia, Y. Zhao, H. Lv, J. Alloys Compd. 745, 547–554 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang, J. Li, L. Hu, Synth. Met. 228, 18–24 (2017)CrossRefGoogle Scholar
  10. 10.
    Z. Wang, S. Qu, Y. Cheng, C. Zheng, S. Chen, H. Wu, Appl. Surf. Sci. 416, 338–343 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Yu, S. Qu, D. Zang, L. Wang, H. Wu, Nanoscale Res. Lett. 13, 50 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, RSC Adv. 6(63), 58069–58076 (2016)CrossRefGoogle Scholar
  13. 13.
    T. Xu, J. Hu, Y. Yang, W. Que, X. Yin, H. Wu, L. Chen, J. Mater. Sci.: Mater. Electron. 29, 4888–4894 (2018)Google Scholar
  14. 14.
    Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, C. Soukoulis, Adv. Opt. Mater. 4, 1824–1828 (2016)CrossRefGoogle Scholar
  15. 15.
    H.J. Wu, G.L. Wu, L.D. Wang, Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Qin, Q. Shuai, G.L. Wu, B.H. Zheng, Z.D. Wang, H.J. Wu, Mater. Sci. Eng. B 224, 125–138 (2017)CrossRefGoogle Scholar
  17. 17.
    H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  18. 18.
    H.J. Wu, G.L. Wu, Y.Y. Ren, X.H. Li, L.D. Wang, Chem. Eur. J. 22, 8864–8871 (2016)CrossRefGoogle Scholar
  19. 19.
    S.H. Qu, Y.K. Yu, K.J. Lin, P.Y. Liu, C.H. Zheng, L.D. Wang, T.T. Xu, Z.D. Wang, H.J. Wu, J. Mater. Sci.: Mater. Electron. 29, 1232–1237 (2018)Google Scholar
  20. 20.
    C.S. Lei, X.F. Zhu, B.C. Zhu, C.J. Jiang, Y. Le, J.G. Yu, J. Hazard. Mater. 321, 801–811 (2017)CrossRefGoogle Scholar
  21. 21.
    X.Y. Liu, S. An, Y.J. Wang, Q. Yang, L. Zhang, Chem. Eng. J. 262, 517–526 (2015)CrossRefGoogle Scholar
  22. 22.
    C.S. Lei, X.F. Zhu, B.C. Zhu, J.G. Yu, W. Ho, J. Colloid Interface Sci. 466, 238–246 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Vahidhabanu, A.A. Idowu, D. Karuppasamy, B.R. Babu, M. Vineetha, ACS Sustain. Chem. Eng. 5, 10361–10370 (2017)CrossRefGoogle Scholar
  24. 24.
    R. Miandad, R. Kumar, M.A. Barakat, C. Basheer, A.S. Aburiazaiza, A.S. Nizami, M. Rehan, J. Colloid Interface Sci. 511, 402–410 (2018)CrossRefGoogle Scholar
  25. 25.
    Y.Q. Zheng, B.C. Zhu, H. Chen, W. You, C.J. Jiang, J.G. Yu, J. Colloid Interface Sci. 504, 688–696 (2017)CrossRefGoogle Scholar
  26. 26.
    J.Q. Zhao, Z.X. Lu, X. He, X.F. Zhang, Q.Y. Li, T. Xia, W. Zhang, C.H. Lu, ACS Sustain. Chem. Eng. 5, 7723–7732 (2017)CrossRefGoogle Scholar
  27. 27.
    D. Maiti, S. Mukhopadhyay, P.S. Devi, ACS Sustain. Chem. Eng. 5, 11255–11267 (2017)CrossRefGoogle Scholar
  28. 28.
    S.X. Yang, L.Y. Wang, X.D. Zhang, W.J. Yang, G.L. Song, Chem. Eng. J. 275, 315–321 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations