Advertisement

Surfactant molecules make liquid phase exfoliated graphene a switching element for resistive random access memory applications

  • Sheena S. Sukumaran
  • K. B. Jinesh
  • K. G. Gopchandran
Article
  • 100 Downloads

Abstract

Few-layer graphene sheets with less conductivity have been chemically exfoliated using dioctyl sulfosuccinate sodium salt as the surfactant. The resistive memory devices fabricated using these liquid-phase exfoliated graphene (LPEG) thin films exhibit reversible volatile memory characteristics. While single layer graphene is known for exhibiting volatile memory behaviour, LPEG opens up a chemical route for low-cost memory option with a low thermal budget compared to the chemical vapour deposited monolayer graphene. The LPEG memory devices show good data retention and reliable write-read-erase endurance over 300 cycles.

Notes

Acknowledgements

Sheena S. Sukumaran acknowledges the financial support from Department of Science and Technology, India through PURSE programme.

References

  1. 1.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 11–14 (2008).  https://doi.org/10.1103/PhysRevLett.100.016602 Google Scholar
  2. 2.
    J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).  https://doi.org/10.1126/science.1136836 CrossRefGoogle Scholar
  3. 3.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).  https://doi.org/10.1126/science.1157996 CrossRefGoogle Scholar
  4. 4.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).  https://doi.org/10.1126/science.1156965 CrossRefGoogle Scholar
  5. 5.
    K. Soo, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nat. Lett. 457, 706–710 (2009).  https://doi.org/10.1038/nature07719 CrossRefGoogle Scholar
  6. 6.
    A.J. Hong, E.B. Song, H.S. Yu, M.J. Allen, J. Kim, J.D. Fowler, J.K. Wassei, Y. Park, Y. Wang, J. Zou, R.B. Kaner, B.H. Weiller, K.L. Wang, Graphene flash memory. ACS Nano 5, 7812 (2011).  https://doi.org/10.1021/nn201809k CrossRefGoogle Scholar
  7. 7.
    S. Wang, J. Pu, D.S.H. Chan, B.J. Cho, K.P. Loh, Wide memory window in graphene oxide charge storage nodes. Appl. Phys. Lett. 96, 143109 (2010).  https://doi.org/10.1063/1.3383234 CrossRefGoogle Scholar
  8. 8.
    N. Zhan, M. Olmedo, G. Wang, J. Liu, Graphene based nickel nanocrystal flash memory. Appl. Phys. Lett. 99, 113112 (2011).  https://doi.org/10.1063/1.3640210 CrossRefGoogle Scholar
  9. 9.
    S. Lee, J. Sohn, Z. Jiang, H.-Y. Chen, H.-S. P. Wong, Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. (2015).  https://doi.org/10.1038/ncomms9407 Google Scholar
  10. 10.
    C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.W. Li, Nonvolatile resistive switching in graphene oxide thin films., Appl. Phys. Lett. (2009).  https://doi.org/10.1063/1.3271177 Google Scholar
  11. 11.
    L.H. Wang, W. Yang, Q.Q. Sun, P. Zhou, H.L. Lu, S.J. Ding, D. Wei, Zhang, The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Appl. Phys. Lett. 100, 1–5 (2012).  https://doi.org/10.1063/1.3681366 Google Scholar
  12. 12.
    B. Standley, W. Bao, H. Zhang, J. Bruck, C. Ning Lau, M. Bockrath, Graphene based atomic scale switches, Nano Lett. 8 3345–3349 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Li, A. Sinitskii, J.M. Tour, Electronic two-terminal bistable graphitic memories. Nat. Mater. 7, 966–971 (2008).  https://doi.org/10.1038/nmat2331 CrossRefGoogle Scholar
  14. 14.
    T.J. Echtermeyer, M.C. Lemme, M. Baus, B.N. Szafranek, A.K. Geim, H. Kurz, Non-volatile switching in graphene field effect devices. IEEE Electron Device Lett. 29, 14 (2008).  https://doi.org/10.1109/LED.2008.2001179 CrossRefGoogle Scholar
  15. 15.
    M. Lubben, P. Karakolis, V. Ioannou-Sougleridis, P. Normand, P. Dimitrakis, I. Valov, Graphene-modified interface controls transition from VCM to ECM switching modes in Ta/TaOx based memristive devices. Adv. Mater. 27, 6202–6207 (2015).  https://doi.org/10.1002/adma.201502574 CrossRefGoogle Scholar
  16. 16.
    S. Liu, N. Lu, X. Zhao, H. Xu, W. Banerjee, H. Lv, S. Long, Q. Li, Q. Liu, M. Liu, Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv Mater. 28, 10623–10629 (2016).  https://doi.org/10.1002/adma.201603293 CrossRefGoogle Scholar
  17. 17.
    X. Zhao, J. Ma, X. Xiao, Q. Liu, L. Shao, D. Chen, S. Liu, J. Niu, X. Zhang, Y. Wang, R. Cao, W. Wang, Z. Di, Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv. Mater. (2018).  https://doi.org/10.1002/adma.201705193 Google Scholar
  18. 18.
    H. Tian, H.Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T.L. Ren, Y. Zhang, H.S.P. Wong, Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. Nano Lett. 13, 651–657 (2013).  https://doi.org/10.1021/nl304246d CrossRefGoogle Scholar
  19. 19.
    J. Kim, D. Kim, Y. Jo, J. Han, H. Woo, H. Kim, K.K. Kim, J.P. Hong, H. Im, Impact of graphene and single-layer BN insertion on bipolar resistive switching characteristics in tungsten oxide resistive memory. Thin Solid Films 589, 188–193 (2015).  https://doi.org/10.1016/j.tsf.2015.05.002 CrossRefGoogle Scholar
  20. 20.
    X. Zhao, S. Liu, J. Niu, L. Liao, Q. Liu, X. Xiao, H. Lv, S. Long, W. Banerjee, W. Li, S. Si, M. Liu, Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small 13, 1603948 (2017).  https://doi.org/10.1002/smll.201603948 CrossRefGoogle Scholar
  21. 21.
    E.U. Stützel, M. Burghard, K. Kern, F. Traversi, F. Nichele, R. Sordan, A graphene nanoribbon memory cell. Small 6, 2822–2825 (2010).  https://doi.org/10.1002/smll.201000854 CrossRefGoogle Scholar
  22. 22.
    S. Pinto, R. Krishna, C. Dias, G. Pimentel, G.N.P. Oliveira, J.M. Teixeira, P. Aguiar, E. Titus, J. Gracio, J. Ventura, J.P. Araujo, Resistive switching and activity-dependent modifications in Ni-doped graphene oxide thin films. Appl. Phys. Lett. 101, 63104 (2012).  https://doi.org/10.1063/1.4742912 CrossRefGoogle Scholar
  23. 23.
    S.-T. Han, Y. Zhou, Q.D. Yang, L. Zhou, L.-B. Huang, Y. Yan, C.-S. Lee, V.A. Roy, Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide. ACS Nano 8 1923–1931 (2014).  https://doi.org/10.1021/nn406505t CrossRefGoogle Scholar
  24. 24.
    X.D. Zhuang, Y. Chen, G. Liu, P.P. Li, C.X. Zhu, E.T. Kang, K.G. Neoh, B. Zhang, J.H. Zhu, Y.X. Li, Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Adv. Mater. 22, 1731–1735 (2010).  https://doi.org/10.1002/adma.200903469 CrossRefGoogle Scholar
  25. 25.
    C. He, Z. Shi, W. Yang, R. Yang, D. Shi, G. Zhang, Multilevel resistive switching in planar graphene/SiO2 nanogap structures. ACS Nano 6, 4214–4221 (2012)CrossRefGoogle Scholar
  26. 26.
    Y. Chen, B. Zhang, G. Liu, X. Zhuang, E.T. Kang, Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41, 4688–4707 (2012).  https://doi.org/10.1039/c2cs35043b CrossRefGoogle Scholar
  27. 27.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).  https://doi.org/10.1016/j.ssc.2007.03.052 CrossRefGoogle Scholar
  28. 28.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 1–4 (2006).  https://doi.org/10.1103/PhysRevLett.97.187401 Google Scholar
  29. 29.
    M. Yi, Z. Shen, S. Ma, X. Zhang, A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J. Nanoparticle Res. 14 (2012).  https://doi.org/10.1007/s11051-012-1003-5
  30. 30.
    A. Eckmann, A. Felten, I. Verzhbitskiy, R. Davey, C. Casiraghi, Raman study on defective graphene: effect of the excitation energy, type, and amount of defects. Phys. Rev. B 88, 1–11 (2013).  https://doi.org/10.1103/PhysRevB.88.035426 CrossRefGoogle Scholar
  31. 31.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).  https://doi.org/10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  32. 32.
    Z.A. Boeva, K.A. Milakin, M. Pesonen, A.N. Ozerin, V.G. Sergeyev, T. Lindfors, Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications. RSC Adv. 4, 46340–46350 (2014).  https://doi.org/10.1039/C4RA08362H CrossRefGoogle Scholar
  33. 33.
    H. Ju, S. Choi, S.H. Huh, X-ray diffraction patterns of thermally-reduced graphenes. J. Korean Phys. Soc. 57, 1649–1652 (2010).  https://doi.org/10.3938/jkps.57.1649 CrossRefGoogle Scholar
  34. 34.
    A. Sinitskii, J.M. Tour, Lithographic graphitic memories. ACS Nano 3, 2760–2766 (2009).  https://doi.org/10.1021/nn9006225 CrossRefGoogle Scholar
  35. 35.
    S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6, 458–464 (2010).  https://doi.org/10.1002/smll.200901162 CrossRefGoogle Scholar
  36. 36.
    M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010).  https://doi.org/10.1021/nn1005304 CrossRefGoogle Scholar
  37. 37.
    G.S. Bang, H.-M. So, M.J. Lee, C.W. Ahn, Preparation of graphene with few defects using expanded graphite and rose bengal. J. Mater. Chem. 22, 4806–4810 (2012).  https://doi.org/10.1039/c2jm14205h CrossRefGoogle Scholar
  38. 38.
    I.-W.P. Chen, C.-Y. Huang, S.-H. Saint Jhou, Y.-W. Zhang, Exfoliation and performance properties of non-oxidized graphene in water. Sci. Rep. 4, 3928 (2015).  https://doi.org/10.1038/srep03928 CrossRefGoogle Scholar
  39. 39.
    L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49, 1653–1662 (2011).  https://doi.org/10.1016/j.carbon.2010.12.049 CrossRefGoogle Scholar
  40. 40.
    M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. Mcgovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).  https://doi.org/10.1021/ja807449u CrossRefGoogle Scholar
  41. 41.
    D. Wei, Y. Liu, H. Zhang, L. Huang, B. Wu, J. Chen, G. Yu, Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 131, 11147–11154 (2009)CrossRefGoogle Scholar
  42. 42.
    A. Barreiro, F. Börrnert, M.H. Rümmeli, B. Büchner, L.M.K. Vandersypen, Graphene at high bias: cracking, layer by layer sublimation, and fusing. Nano Lett. 12, 1873–1878 (2012).  https://doi.org/10.1021/nl204236u CrossRefGoogle Scholar
  43. 43.
    F. Börrnert, A. Barreiro, D. Wolf, M.I. Katsnelson, B. Büchner, L.M.K. Vandersypen, M.H. Rümmeli, Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 12, 4455–4459 (2012).  https://doi.org/10.1021/nl301232t CrossRefGoogle Scholar
  44. 44.
    Y.J. Shin, J.H. Kwon, G. Kalon, K. Lam, C.S. Bhatia, G. Liang, Y.J. Shin, J.H. Kwon, G. Kalon, K. Lam, C.S. Bhatia, G. Liang, H. Yang, Ambipolar bistable switching effect of graphene ambipolar bistable switching effect of graphene. Appl. Phys. Lett. (2010).  https://doi.org/10.1063/1.3532849 Google Scholar
  45. 45.
    H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.-E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. Kim, R.S. Ruoff, S.-Y. Choi, Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010).  https://doi.org/10.1021/nl101902k CrossRefGoogle Scholar
  46. 46.
    S.K. Hong, J.E. Kim, S.O. Kim, S.-Y. Choi, B.J. Cho, Flexible resistive switching memory device based on graphene oxide. IEEE Electron Device Lett. 31, 1005–1007 (2010).  https://doi.org/10.1109/LED.2010.2053695 CrossRefGoogle Scholar
  47. 47.
    F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, R.W. Li, Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49, 3796–3802 (2011).  https://doi.org/10.1016/j.carbon.2011.04.071 CrossRefGoogle Scholar
  48. 48.
    B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou, State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5, 311–329 (2016).  https://doi.org/10.1515/ntrev-2015-0029 CrossRefGoogle Scholar
  49. 49.
    P. Hazra, A.N. Resmi, K.B. Jinesh, Gate controllable resistive random access memory devices using reduced graphene oxide. Appl. Phys. Lett. 108, 10–15 (2016).  https://doi.org/10.1063/1.4945744 CrossRefGoogle Scholar
  50. 50.
    G.W. Zhou, G.Z. Li, W.J. Chen, Fourier transform infrared investigation on water states and the conformations of aerosol-OT in reverse microemulsions. Langmuir 18, 4566–4571 (2002).  https://doi.org/10.1021/la0116241 CrossRefGoogle Scholar
  51. 51.
    C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, G. Zhang, D.-H. Qu, H. Tian, M.A. Ratner, H.Q. Xu, A. Nitzan, X. Guo, Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1446 (2016)CrossRefGoogle Scholar
  52. 52.
    R.B. Abernethy, The New Weibull Handbook, (Robert B. Abernethy, North Palm Beach, 2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OptoelectronicsUniversity of KeralaThiruvananthapuramIndia
  2. 2.Department of PhysicsIndian Institute of Space-Science and Technology (IIST)ThiruvananthapuramIndia

Personalised recommendations