Skip to main content
Log in

Strong mechanics and broadened microwave absorption of graphene-based sandwich structures and surface-patterned structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Since practical microwave absorption materials and structures are highly pursued in broad industry, traditional hybrid materials generally suffer from poor mechanical strength and narrow effective microwave absorption bandwidth. In this work, we utilized a graphene-based fabric as the effective microwave absorption layer, followed by sandwiching into glass fiber and carbon fiber cloths, to fabricate practical composite structures. For further extending the effective absorption bandwidth, surface-patterned structures were employed to promote the microwave absorption performance in X and Ku bands. The fabricated sandwich structure and SA exhibit > 90% absorption in 9.8–18 and 8–18 GHz, respectively. With the presence of epoxy matrices, both the mechanical strength polymeric sandwich and surface-patterned structures hold high efficiency in broadband absorption. For understanding the effects of the material and structure effect on the performance, various surface conditions were tuned to tailor the performance, and the corresponding mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.C. Watts, W.K. Hsu, A. Barnes, B. Chambers, Adv. Mater. 15, 600 (2003)

    Article  Google Scholar 

  2. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Adv. Mater. 16, 401 (2004)

    Article  Google Scholar 

  3. B. Shen, W.T. Zhai, W.G. Zheng, Adv. Funct. Mater. 24, 4542 (2014)

    Article  Google Scholar 

  4. H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater. 26, 8120 (2014)

    Article  Google Scholar 

  5. B. Wen, M.S. Cao, M.M. Lu, W. Cao, H. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, Adv. Mater. 26, 3484 (2014)

    Article  Google Scholar 

  6. Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27, 2049 (2015)

    Article  Google Scholar 

  7. Z.F. Liu, G. Bai, Y. Huang, F.F. Li, Y.F. Ma, T.Y. Guo, X.B. He, X. Liu, H.J. Gao, Y.S. Chen, J. Phys. Chem. C 111, 13696 (2007)

    Article  Google Scholar 

  8. F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Carbon 50, 1972 (2012)

    Article  Google Scholar 

  9. D. Micheli, R.B. Morles, M. Marchetti, F. Moglie, V.M. Primiani, Carbon 68, 149 (2014)

    Article  Google Scholar 

  10. Q. Qi, Y. Huang, M. Xu, X. Lei, X. Liu, J. Mater. Sci. 28, 15043 (2017)

    Google Scholar 

  11. L. Yu, Y. Zhu, Y. Fu, J. Mater. Sci. 28, 17202 (2017)

    Google Scholar 

  12. W. Li, T.L. Wu, W. Wang, P.C. Zhai, J.G. Guan, J. Appl. Phys. 116, 044110 (2014)

    Article  Google Scholar 

  13. Q. Zhou, X.W. Yin, F. Ye, X.F. Liu, L. Cheng, L.T. Zhang, Mater. Des. 123, 46 (2017)

    Article  Google Scholar 

  14. W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, H.F. Ju, Carbon 77, 130 (2014)

    Article  Google Scholar 

  15. Z. Wang, L. Wu, J. Zhou, Z. Jiang, B. Shen, Nanoscale 6, 12298 (2014)

    Article  Google Scholar 

  16. W.L. Song, Z.L. Zhou, L.C. Wang, X.D. Cheng, M.J. Chen, R.J. He, H.S. Chen, Y.Z. Yang, D.N. Fang, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b15367

    Google Scholar 

  17. T.T. Chen, F. Deng, J. Zhu, C.F. Chen, G.B. Sun, S.L. Ma, X.J. Yang, J. Mater. Chem. 22, 15190 (2012)

    Article  Google Scholar 

  18. M. Fu, Q. Jiao, Y. Zhao, J. Mater. Chem. A 1, 5577 (2013)

    Article  Google Scholar 

  19. W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr, Y.P. Sun, Angew. Chem. Int. Ed. 51, 6498 (2012)

    Article  Google Scholar 

  20. M.J. Meziani, W.L. Song, P. Wang, F.S. Lu, Z.L. Hou, A. Anderson, H. Maimaiti, Y.P. Sun, ChemPhysChem 16, 1339 (2015)

    Article  Google Scholar 

  21. W.L. Song, X.T. Guan, L.Z. Fan, Y.B. Zhao, W.Q. Cao, C.Y. Wang, M.S. Cao, Carbon 100, 109 (2016)

    Article  Google Scholar 

  22. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Carbon 50, 2202 (2012)

    Article  Google Scholar 

  23. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, ACS Appl. Mater. Interfaces 6, 7471 (2014)

    Article  Google Scholar 

  24. W.L. Song, L.Z. Fan, Z.L. Hou, K.L. Zhang, Y.B. Ma, M.S. Cao, J. Mater. Chem. C 5, 2432 (2017)

    Article  Google Scholar 

  25. P.Y. Liu, L.M. Wang, B. Cao, L.C. Li, K.L. Zhang, X.M. Bian, Z.L. Hou, J. Mater. Chem. C 5, 6745 (2017)

    Article  Google Scholar 

  26. W.S.J. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  27. L.L. Zhang, X.X. Yu, H.R. Hu, Y. Li, M.Z. Wu, Z.Z. Wang, G. Li, Z.Q. Sun, C.L. Chen, Sci. Rep. 5, 9298 (2015)

    Article  Google Scholar 

  28. D. Sun, Q. Zou, G. Qian, C. Sun, W. Jiang, F. Li, Acta Mater. 61, 5829 (2013)

    Article  Google Scholar 

  29. X. Sun, J.P. He, G.X. Li, J. Tang, T. Wang, Y.X. Guo, H.R. Xue, J. Mater. Chem. C 1, 765 (2013)

    Article  Google Scholar 

  30. L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, Compos. Sci. Technol. 108, 1 (2015)

    Article  Google Scholar 

  31. G. Pan, J. Zhu, S. Ma, G. Sun, X. Yang, ACS Appl. Mater. Interfaces 5, 12716 (2013)

    Article  Google Scholar 

  32. F. Wu, Y. Xia, Y. Wang, M. Wang, J. Mater. Chem. A 2, 20307 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from NSF of China (51302011) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Ming Sun or Mao-Sheng Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10854_2018_9005_MOESM1_ESM.docx

Supplementary material: Effect of rGO on the dielectric properties and absorbing properties, dielectric properties of GF. (DOCX 191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XX., Sun, CM., Wen, FB. et al. Strong mechanics and broadened microwave absorption of graphene-based sandwich structures and surface-patterned structures. J Mater Sci: Mater Electron 29, 9683–9691 (2018). https://doi.org/10.1007/s10854-018-9005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9005-4

Navigation