Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method

  • Wei Sun
  • Xiaowei Li
  • Changlu Shao
  • Xinghua Li
  • Ling Zhao
  • Na Lu
  • Yichun Liu


Three dimensional porous WO3 was fabricated by a novel freeze-drying method using a polyvinyl alcohol (PVA)/phosphotungstic acid (H3PW12O40) aqueous solution as the precursor followed by calcination. Results revealed that WO3 interconnected porous structures have channels of 3–10 µm and wall thicknesses of about 0.68 µm. Interestingly, the morphology and porous structure of WO3 samples can be well controlled by the amount of PVA and calcination temperature. To further demonstrate their potential application in photocatalysis, their photocatalytic activities for the photodegradation of Rhodamine B under visible light irradiation were investigated. It was found that the highest photocatalytic activity was obtained by using the WO3 porous sample which prepared by fixing the addition amount of PVA at 7.5% (relative to solvent) and the calcination temperature at 800 °C. The enhanced photocatalytic performance of WO3 can be attributed to the combined effects of increased surface area, the interconnected macroporous as well as the enhanced crystal quality.



The present work is supported financially by the National Natural Science Foundation of China (Nos. 51572045, 51272041, 61201107, 11604044, and 91233204), the 111 Project (No. B13013), the Natural Science Foundation of Jilin Province of China (20160101313JC), the Fundamental Research Funds for the Central Universities (2412017FZ009, 2412017QD007, 2412016KJ017), the China Postdoctoral Science Foundation (No. 2017M610188).

Supplementary material

10854_2018_8996_MOESM1_ESM.docx (9.5 mb)
Supplementary material 1 (DOCX 9759 KB)


  1. 1.
    Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 5, 606–618 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Kumar, S. Kumar, A. Bahuguna, A. Kumar, V. Sharma, V. Krishnan, Mater. Chem. Front. 1, 2391–2404 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, C.L. Shao, X.H. Li, F.J. Miao, K.X. Wang, N. Lu, Y.C. Liu, J. Alloys Compd. 686, 137–144 (2016)CrossRefGoogle Scholar
  4. 4.
    Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Nature 414, 625–627 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Wang, L.X. Yi, J.E. Halpert, X.Y. Lai, Y.Y. Liu, H.B. Cao, R.B. Yu, D. Wang, Y.L. Li, Small 2, 265–271 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Kumar, V. Sharma, K. Bhattacharyy, V. Krishnan, Mater. Chem. Front. 1, 1093–1106 (2017)CrossRefGoogle Scholar
  7. 7.
    H.B. Liu, H.L. Hou, F.M. Gao, X.H. Yao, W.Y. Yang, ACS Appl. Mater. Interfaces 8, 1929–1936 (2016)CrossRefGoogle Scholar
  8. 8.
    P. Zhang, C.L. Shao, Z.Y. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, Y.C. Liu, Nanoscale 3, 2943–2949 (2011)CrossRefGoogle Scholar
  9. 9.
    M.Y. Zhang, C.L. Shao, X.H. Li, P. Zhang, Y.Y. Sun, C.Y. Su, X. Zhang, J.J. Ren, Y.C. Liu, Nanoscale 4, 7501–7508 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, G.C. Xiao, F.X. Xiao, B. Liu, Mater. Chem. Front. 1, 231–250 (2017)CrossRefGoogle Scholar
  11. 11.
    J.H. Xu, W.Z. Wang, S.M. Sun, L. Wang, Appl. Catal. B 111–112, 126–132 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Waqas, Y. Wei, D. Mao, J. Qi, Y. Yang, B. Wang, D. Wang, Nano Res. 10, 3920–39289 (2017)CrossRefGoogle Scholar
  13. 13.
    Z.F. Liu, Z.G. Zhao, M. Miyauchi, J. Phys. Chem. C 113, 17132–17137 (2009)CrossRefGoogle Scholar
  14. 14.
    R.S. Khnayzer, J. Blumhoff, J.A. Harrington, A. Haefele, F. Deng, F.N. Castellano, Chem. Commun. 48, 209–211 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, J. Li, W.Z. Li, Y.H. Yang, Y.M. Li, Q.Y. Chen, J. Phys. Chem. C 119, 14834–14842 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Miseki, H. Kusama, H. Sugihara, K. Sayama, J. Phys. Chem. Lett. 1, 1196–1200 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Chen, J.h. Ye, Adv. Funct. Mater. 18, 1922–1928 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Yang, Q. Jin, D. Mao, J. Qi, Y.Z. Wei, R.B. Yu, A.R. Li, S.Z. Li, H.J. Zhao, Y.W. Ma, L.H. Wang, W.P. Hu, D. Wang, Adv. Mater. 29, 1604795 (2017)CrossRefGoogle Scholar
  19. 19.
    J.L. Wang, X.D. Yang, K. Zhao, P.F. Xu, L.B. Zong, R.B. Yu, D. Wang, J.X. Deng, J. Chen, X.R. Xing, J. Mater. Chem. A 1, 9069–9074 (2013)CrossRefGoogle Scholar
  20. 20.
    Q.H. Liang, Z. Li, X.L. Yu, Z.H. Huang, F.Y. Kang, Q.H. Yang, Adv. Mater. 27, 4634–4639 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Qi, X.Y. Lai, J.Y. Wang, H.J. Tang, H. Ren, Y. Yang, Q. Jin, L.J. Zhang, R.B. Yu, G.H. Ma, Z.G. Su, H.J. Zhao, D. Wang, Chem. Soc. Rev. 44, 6749–6773 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Chang, K. Yu, C.X. Zhang, R. Li, P.Y. Zhao, L.L. Lou, S.X. Liu, Appl. Catal. B 176–177, 363–373 (2015)CrossRefGoogle Scholar
  23. 23.
    J.Z. Ou, R.A. Rani, S. Balendhran, A.S. Zoolfakar, M.R. Field, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrochem. Commun. 27, 128–132 (2013)CrossRefGoogle Scholar
  24. 24.
    Y.H. Li, W. Luo, N. Qin, J.P. Dong, J. Wei, W. Li, S.S. Feng, J.C. Chen, J.Q. Xu, A.A. Elzatahry, M.H. Es-Saheb, Y.H. Deng, D.Y. Zhao, Angew. Chem. 53, 9035 – 9040 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Shibata, T. Morita, T. Ogura, K. Nishio, H. Sakai, M. Abe, M. Matsumoto, J. Mater. Sci. 44, 2541–2547 (2009)CrossRefGoogle Scholar
  26. 26.
    T. Alapi, P. Sipos, I. Ilisz, G. Wittmann, Z. Ambrus, I. Kiricsi, K. Mogyoro´si, A. Dombi, Appl. Catal. A 303, 1–8 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Barrow, A. Eltmimi, A. Ahmed, P. Myers, H.F. Zhang, J. Mater. Chem. 22, 11615–11620 (2012)CrossRefGoogle Scholar
  28. 28.
    X.H. Zhou, D.X. Wei, H.M. Ye, X.C. Zhang, X.Y. Meng, Q. Zhou, Mat. Sci. Eng. C 67, 326–335 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Qian, H.F. Zhang, J. Chem. Technol. Biotechnol. 86, 172–184 (2011)CrossRefGoogle Scholar
  30. 30.
    Y.Q. Wang, B. Fugetsu, I. Sakata, M. Terrones, M. Endo, M. Dresselhaus, Carbon 98, 334–342 (2016)CrossRefGoogle Scholar
  31. 31.
    H.F. Zhang, A.I. Cooper, Adv. Mater. 19, 1529–1533 (2007)CrossRefGoogle Scholar
  32. 32.
    M.C. Gutiérrez, Z.Y. García-Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M.L. Ferrer, F. del Monte, Adv. Funct. Mater. 17, 3505–3513 (2007)CrossRefGoogle Scholar
  33. 33.
    V.K. Tomer, S. Duhan, J. Mater. Chem. A 4, 1033–1043 (2016)CrossRefGoogle Scholar
  34. 34.
    H.F. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, A.I. Cooper, Nat. Mater. 4, 787–793 (2005)CrossRefGoogle Scholar
  35. 35.
    G.R. Rao, T. Rajkumar, Catal. Lett. 120, 261–273 (2008)CrossRefGoogle Scholar
  36. 36.
    H.S. Mansur, R.L. Ore´fice, A.A.P. Mansur, Polymer 45, 7193–7202 (2004)CrossRefGoogle Scholar
  37. 37.
    S.L. Bai, K.W. Zhang, R.X. Luo, D.Q. Li, A.F. Chena, C.C. Liu, J. Mater. Chem. 22, 12643–12650 (2012)CrossRefGoogle Scholar
  38. 38.
    R. Malik, V.K. Tomer, V. Chaudhary, M.S. Dahiya, S.P. Nehra, P.S. Rana, S. Duhan, Sens. Actuators B 239, 364–373 (2017)CrossRefGoogle Scholar
  39. 39.
    C.H. Sui, J. Gong, T.X. Cheng, G.D. Zhou, S.F. Dong, Appl. Surf. Sci. 257, 8600–8604 (2011)CrossRefGoogle Scholar
  40. 40.
    Y.M. Hunge, Ceram. Int. 43, 10089–10096 (2017)CrossRefGoogle Scholar
  41. 41.
    S.S. Kalanur, H. Seo, J. Colloid Interfaces Sci. 509, 440–447 (2018)CrossRefGoogle Scholar
  42. 42.
    L.F. Lopes, F.M. Pontes, L.O. Garcia, D.S.L. Pontes, D. Padovani, A.J. Chiquito, S.R. Teixeira, Y.N. Colmenares, V.R. Mastelaro, E. Longo, J. Alloys. Compd. 736, 143–151 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunPeople’s Republic of China

Personalised recommendations