Skip to main content
Log in

Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three dimensional porous WO3 was fabricated by a novel freeze-drying method using a polyvinyl alcohol (PVA)/phosphotungstic acid (H3PW12O40) aqueous solution as the precursor followed by calcination. Results revealed that WO3 interconnected porous structures have channels of 3–10 µm and wall thicknesses of about 0.68 µm. Interestingly, the morphology and porous structure of WO3 samples can be well controlled by the amount of PVA and calcination temperature. To further demonstrate their potential application in photocatalysis, their photocatalytic activities for the photodegradation of Rhodamine B under visible light irradiation were investigated. It was found that the highest photocatalytic activity was obtained by using the WO3 porous sample which prepared by fixing the addition amount of PVA at 7.5% (relative to solvent) and the calcination temperature at 800 °C. The enhanced photocatalytic performance of WO3 can be attributed to the combined effects of increased surface area, the interconnected macroporous as well as the enhanced crystal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 5, 606–618 (2013)

    Article  Google Scholar 

  2. A. Kumar, S. Kumar, A. Bahuguna, A. Kumar, V. Sharma, V. Krishnan, Mater. Chem. Front. 1, 2391–2404 (2017)

    Article  Google Scholar 

  3. X. Zhang, C.L. Shao, X.H. Li, F.J. Miao, K.X. Wang, N. Lu, Y.C. Liu, J. Alloys Compd. 686, 137–144 (2016)

    Article  Google Scholar 

  4. Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Nature 414, 625–627 (2001)

    Article  Google Scholar 

  5. S. Wang, L.X. Yi, J.E. Halpert, X.Y. Lai, Y.Y. Liu, H.B. Cao, R.B. Yu, D. Wang, Y.L. Li, Small 2, 265–271 (2012)

    Article  Google Scholar 

  6. S. Kumar, V. Sharma, K. Bhattacharyy, V. Krishnan, Mater. Chem. Front. 1, 1093–1106 (2017)

    Article  Google Scholar 

  7. H.B. Liu, H.L. Hou, F.M. Gao, X.H. Yao, W.Y. Yang, ACS Appl. Mater. Interfaces 8, 1929–1936 (2016)

    Article  Google Scholar 

  8. P. Zhang, C.L. Shao, Z.Y. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, Y.C. Liu, Nanoscale 3, 2943–2949 (2011)

    Article  Google Scholar 

  9. M.Y. Zhang, C.L. Shao, X.H. Li, P. Zhang, Y.Y. Sun, C.Y. Su, X. Zhang, J.J. Ren, Y.C. Liu, Nanoscale 4, 7501–7508 (2012)

    Article  Google Scholar 

  10. J. Zhang, G.C. Xiao, F.X. Xiao, B. Liu, Mater. Chem. Front. 1, 231–250 (2017)

    Article  Google Scholar 

  11. J.H. Xu, W.Z. Wang, S.M. Sun, L. Wang, Appl. Catal. B 111–112, 126–132 (2012)

    Article  Google Scholar 

  12. M. Waqas, Y. Wei, D. Mao, J. Qi, Y. Yang, B. Wang, D. Wang, Nano Res. 10, 3920–39289 (2017)

    Article  Google Scholar 

  13. Z.F. Liu, Z.G. Zhao, M. Miyauchi, J. Phys. Chem. C 113, 17132–17137 (2009)

    Article  Google Scholar 

  14. R.S. Khnayzer, J. Blumhoff, J.A. Harrington, A. Haefele, F. Deng, F.N. Castellano, Chem. Commun. 48, 209–211 (2012)

    Article  Google Scholar 

  15. Y. Liu, J. Li, W.Z. Li, Y.H. Yang, Y.M. Li, Q.Y. Chen, J. Phys. Chem. C 119, 14834–14842 (2015)

    Article  Google Scholar 

  16. Y. Miseki, H. Kusama, H. Sugihara, K. Sayama, J. Phys. Chem. Lett. 1, 1196–1200 (2010)

    Article  Google Scholar 

  17. D. Chen, J.h. Ye, Adv. Funct. Mater. 18, 1922–1928 (2008)

    Article  Google Scholar 

  18. Y. Yang, Q. Jin, D. Mao, J. Qi, Y.Z. Wei, R.B. Yu, A.R. Li, S.Z. Li, H.J. Zhao, Y.W. Ma, L.H. Wang, W.P. Hu, D. Wang, Adv. Mater. 29, 1604795 (2017)

    Article  Google Scholar 

  19. J.L. Wang, X.D. Yang, K. Zhao, P.F. Xu, L.B. Zong, R.B. Yu, D. Wang, J.X. Deng, J. Chen, X.R. Xing, J. Mater. Chem. A 1, 9069–9074 (2013)

    Article  Google Scholar 

  20. Q.H. Liang, Z. Li, X.L. Yu, Z.H. Huang, F.Y. Kang, Q.H. Yang, Adv. Mater. 27, 4634–4639 (2015)

    Article  Google Scholar 

  21. J. Qi, X.Y. Lai, J.Y. Wang, H.J. Tang, H. Ren, Y. Yang, Q. Jin, L.J. Zhang, R.B. Yu, G.H. Ma, Z.G. Su, H.J. Zhao, D. Wang, Chem. Soc. Rev. 44, 6749–6773 (2015)

    Article  Google Scholar 

  22. Y. Chang, K. Yu, C.X. Zhang, R. Li, P.Y. Zhao, L.L. Lou, S.X. Liu, Appl. Catal. B 176–177, 363–373 (2015)

    Article  Google Scholar 

  23. J.Z. Ou, R.A. Rani, S. Balendhran, A.S. Zoolfakar, M.R. Field, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrochem. Commun. 27, 128–132 (2013)

    Article  Google Scholar 

  24. Y.H. Li, W. Luo, N. Qin, J.P. Dong, J. Wei, W. Li, S.S. Feng, J.C. Chen, J.Q. Xu, A.A. Elzatahry, M.H. Es-Saheb, Y.H. Deng, D.Y. Zhao, Angew. Chem. 53, 9035 – 9040 (2014)

    Article  Google Scholar 

  25. H. Shibata, T. Morita, T. Ogura, K. Nishio, H. Sakai, M. Abe, M. Matsumoto, J. Mater. Sci. 44, 2541–2547 (2009)

    Article  Google Scholar 

  26. T. Alapi, P. Sipos, I. Ilisz, G. Wittmann, Z. Ambrus, I. Kiricsi, K. Mogyoro´si, A. Dombi, Appl. Catal. A 303, 1–8 (2006)

    Article  Google Scholar 

  27. M. Barrow, A. Eltmimi, A. Ahmed, P. Myers, H.F. Zhang, J. Mater. Chem. 22, 11615–11620 (2012)

    Article  Google Scholar 

  28. X.H. Zhou, D.X. Wei, H.M. Ye, X.C. Zhang, X.Y. Meng, Q. Zhou, Mat. Sci. Eng. C 67, 326–335 (2016)

    Article  Google Scholar 

  29. L. Qian, H.F. Zhang, J. Chem. Technol. Biotechnol. 86, 172–184 (2011)

    Article  Google Scholar 

  30. Y.Q. Wang, B. Fugetsu, I. Sakata, M. Terrones, M. Endo, M. Dresselhaus, Carbon 98, 334–342 (2016)

    Article  Google Scholar 

  31. H.F. Zhang, A.I. Cooper, Adv. Mater. 19, 1529–1533 (2007)

    Article  Google Scholar 

  32. M.C. Gutiérrez, Z.Y. García-Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M.L. Ferrer, F. del Monte, Adv. Funct. Mater. 17, 3505–3513 (2007)

    Article  Google Scholar 

  33. V.K. Tomer, S. Duhan, J. Mater. Chem. A 4, 1033–1043 (2016)

    Article  Google Scholar 

  34. H.F. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, A.I. Cooper, Nat. Mater. 4, 787–793 (2005)

    Article  Google Scholar 

  35. G.R. Rao, T. Rajkumar, Catal. Lett. 120, 261–273 (2008)

    Article  Google Scholar 

  36. H.S. Mansur, R.L. Ore´fice, A.A.P. Mansur, Polymer 45, 7193–7202 (2004)

    Article  Google Scholar 

  37. S.L. Bai, K.W. Zhang, R.X. Luo, D.Q. Li, A.F. Chena, C.C. Liu, J. Mater. Chem. 22, 12643–12650 (2012)

    Article  Google Scholar 

  38. R. Malik, V.K. Tomer, V. Chaudhary, M.S. Dahiya, S.P. Nehra, P.S. Rana, S. Duhan, Sens. Actuators B 239, 364–373 (2017)

    Article  Google Scholar 

  39. C.H. Sui, J. Gong, T.X. Cheng, G.D. Zhou, S.F. Dong, Appl. Surf. Sci. 257, 8600–8604 (2011)

    Article  Google Scholar 

  40. Y.M. Hunge, Ceram. Int. 43, 10089–10096 (2017)

    Article  Google Scholar 

  41. S.S. Kalanur, H. Seo, J. Colloid Interfaces Sci. 509, 440–447 (2018)

    Article  Google Scholar 

  42. L.F. Lopes, F.M. Pontes, L.O. Garcia, D.S.L. Pontes, D. Padovani, A.J. Chiquito, S.R. Teixeira, Y.N. Colmenares, V.R. Mastelaro, E. Longo, J. Alloys. Compd. 736, 143–151 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported financially by the National Natural Science Foundation of China (Nos. 51572045, 51272041, 61201107, 11604044, and 91233204), the 111 Project (No. B13013), the Natural Science Foundation of Jilin Province of China (20160101313JC), the Fundamental Research Funds for the Central Universities (2412017FZ009, 2412017QD007, 2412016KJ017), the China Postdoctoral Science Foundation (No. 2017M610188).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changlu Shao or Xinghua Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9759 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Li, X., Shao, C. et al. Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method. J Mater Sci: Mater Electron 29, 9605–9612 (2018). https://doi.org/10.1007/s10854-018-8996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8996-1

Navigation