A comparative study of transport properties of copper doped cadmium selenide thin films at two dopant concentrations

  • Kriti Sharma
  • Poonam
  • G. S. S. Saini
  • S. K. Tripathi


We have explored the effect of Cu dopant concentration on the electrical transport properties of Cu doped CdSe thin films at two concentrations of Cu (at 1 and 5 at.%). Structural, morphological and elemental analysis has been carried out by using X-ray Diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). XRD analysis reveals the hexagonal (wurtzite) structure of nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films. EDX analysis determines the atomic weight percentage of Cu in these thin films. SEM studies reveal that the grains are uniformly distributed all over the surface of the substrates for nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films. Dark conductivity measurements are made on nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films in the temperature range 110–370 K in order to determine the effect of Cu concentration. The obtained results reveal that dark conductivity increases as the Cu dopant concentration increases as compared to undoped nc-CdSe thin films. Dark conductivity graphs show two distinct regions at high and low temperatures with decreasing activation energies. Low temperature data is analyzed using Mott’s variable-range hopping model which indicates hopping in localized states near the Fermi level. Various Mott parameters such as the density of localized states N(EF), characteristic temperature (To), hopping distance (R) and hopping energy (W) near the Fermi level are calculated. The concentration of charge carriers and carrier mobility are calculated for nc-CdSe:Cu 1% and nc-CdSe:Cu 5% thin films by using Hall measurements. Constant photocurrent measurement is also performed on Cu 1% and Cu 5% doped CdSe thin films to determine occupied density of states, Urbach parameter and density of defect states. Obtained results show that occupied density of states increases for nc-CdSe:Cu 5% as compared to nc-CdSe:Cu 1% thin films.


  1. 1.
    M.Z. Hu, T. Zhu, Nanoscale Res. Lett. 10, 469 (2015)CrossRefGoogle Scholar
  2. 2.
    F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, G. Cao, ACS Appl. Mater. Interfaces 8, 34482 (2016)CrossRefGoogle Scholar
  3. 3.
    M.-L. Tu, Y.-K. Su, R.-T. Chen, Nanoscale Res. Lett. 9, 611 (2014)CrossRefGoogle Scholar
  4. 4.
    B.H. Kang, J.S. Lee, S.W. Lee, S.W. Kim, J.W. Lee, S.A. Gopalan, J.S. Park, D.H. Kwon, J.H. Bae, H.R. Kim, S.W. Kang, Sci. Rep. 6, 34659 (2016)CrossRefGoogle Scholar
  5. 5.
    K.B. Chaudhari, N.M. Gosavi, N.G. Deshpande, S.R. Gosavi, J. Sci.: Adv. Mater. Dev. 1, 476 (2016)Google Scholar
  6. 6.
    S.J. Lim, A. Schleife, A.M. Smith, Nat. Commun. 8, 14849 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Zhao, Y. Zeng, Q. Yang, Y. Li, L. Cui, C. Liu, J. Cryst. Growth 329, 1 (2011)CrossRefGoogle Scholar
  8. 8.
    V. Kumar, D.K. Sharma, K. Sharma, D.K. Dwivedi, Appl. Phys. A 122, 960 (2016)CrossRefGoogle Scholar
  9. 9.
    M.K. Khalaf, B.A.M. ALhilli, A.I. Khudiar, A.Abd Alzahra, Photon. Nanostruct. Fund. Appl. 18, 59 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Choi, M. Seol, W. Kim, K. Yong, J. Phys. Chem. C 118, 5664 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Logu, K. Sankarasubramanian, P. Soundarrajan, K. Sethuraman, Electron. Mater. Lett. 11, 206 (2015)CrossRefGoogle Scholar
  12. 12.
    B.F.P. McVey, J. Butkus, J.E. Halpert, J.M. Hodgkiss, R.D. Tilley, J. Phys. Chem. Lett. 6, 1573 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Wang, X. Yan, W. Li, K. Sun, Adv. Mater. 24, 2742 (2012)CrossRefGoogle Scholar
  14. 14.
    L.R. Bradshaw, K.E. Knowles, S. McDowall, D.R. Gamelin, Nano Lett. 15, 1315 (2015)CrossRefGoogle Scholar
  15. 15.
    S.M. Ng, M. Koneswaranb, R. Narayanaswamy, RSC Adv. 6, 21624 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Xie, J. Su, M. Li, L. Guo, Int. J. Photoenergy 2013, 1 (2013)Google Scholar
  17. 17.
    Y. Deng, J. Yang, R. Yang, K. Shen, D. Wang, D. Wang, AIP Adv. 6, 015203 (2016)CrossRefGoogle Scholar
  18. 18.
    A.R. Krause, C.V. Neste, L. Senesac, T. Thundat, E. Finot, J. Appl. Phys. 103, 094906 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Gunes, H. Hamza Cansever, G. Yilmaz, V. Smirnov, F. Finger, R. Bruggemann, J. Non-Cryst. Solids 358, 2074 (2012)CrossRefGoogle Scholar
  20. 20.
    K.M. Krishna, H. Ebisu, K. Hagimoto, Y. Hayashi, T. Soga, T. Jimbo, M. Umeno, Appl. Phys. Lett. 78, 294 (2001)CrossRefGoogle Scholar
  21. 21.
    K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Curr. Appl. Phys. 13, 964 (2013)CrossRefGoogle Scholar
  22. 22.
    R.H. Bube, M.N. L.E.Benatar, D. Grimbergen, Redfield, J. Appl. Phys. 72, 5766 (1992)CrossRefGoogle Scholar
  23. 23.
    K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, J. Alloys Compd. 651, 42 (2015)CrossRefGoogle Scholar
  24. 24.
    K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Mater. Res. Bull. 47, 1400 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, J. Alloys Compd. 564, 42 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Asadi, A.J. Kronemeijer, T. Cramer, L.J. Anton Koster, W.M.P. Blom, Dago M. de Leeuw, Nat. Commun. 4, 1710 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Appl. Phys. A 108, 911 (2012)CrossRefGoogle Scholar
  28. 28.
    N.F. Mott, Philos. Mag. 19, 835 (1969)CrossRefGoogle Scholar
  29. 29.
    N.F. Mott, J. Non-Cryst. Solids 8, 191 (1972)Google Scholar
  30. 30.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979)Google Scholar
  31. 31.
    S. Ramchandar Rao, M. Nagabhooshanam, V.Hari Babu, Cryst. Res. Technol. 25, 55 (2006)Google Scholar
  32. 32.
    M. Thamilselvan, K. Premnazeer, D. Mangalaraj, Sa.K. Narayandass, J. Yi, Cryst. Res. Technol. 39, 137 (2004)CrossRefGoogle Scholar
  33. 33.
    C.H. Seager, G.E. Pike, Phys. Rev. B 10, 1435 (1974)CrossRefGoogle Scholar
  34. 34.
    A.F. Qasrawi, M.M. Shukri Ahmed, Cryst. Res. Technol. 41, 364 (2006)CrossRefGoogle Scholar
  35. 35.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1970)Google Scholar
  36. 36.
    T.G. Abdel-Malik, R.M. Abdel-Latif, A. Sawaby, S.M. Ahmed, J. Appl. Sci. Res. 4, 331 (2008)Google Scholar
  37. 37.
    N.F. Mott, E.A. Davis, Philos. Mag. 22, 903 (1970)CrossRefGoogle Scholar
  38. 38.
    M.G. Syed Ahamed Basheer, K.S. Rajni, V.S. Vidhya, V. Swaminathan, A. Thayumanavan, K.R. Murali, M. Jayachandran, Cryst. Res. Technol. 46, 261 (2011)CrossRefGoogle Scholar
  39. 39.
    A.A. Yadav, E.U. Masumdar, Mater. Res. Bull. 45, 1455 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Kocka, M. Vanecek, A. Triska, Amorphous Silicon and Related Materials (World Scientific, Singapore, 1988). p. 297Google Scholar
  41. 41.
    J. Willekens, M. Brinza, T. Aernouts, J. Poortmans, G.J. Adriaenssens, ‎J. Non-Cryst. Solids 352, 1675 (2006)CrossRefGoogle Scholar
  42. 42.
    P. Sládek, P. Sťahel, P.R.I. Cabarrocas, P. Morin, Philos. Mag. B 77, 1049 (1998)CrossRefGoogle Scholar
  43. 43.
    A. Madan, M.P. Shaw, Physics and Applications of Amorphous Semiconductors (Academic Press, New York, 1988), p. 161CrossRefGoogle Scholar
  44. 44.
    M. Vanecek, J. Kocka, J. Stuchlik, A. Triska, Solid State Commun. 39, 1199 (1981)CrossRefGoogle Scholar
  45. 45.
    A. Tyagi, O.S. Panwar, B.S. Satyanarayan, P.N. Dixit, T. Seth, R. Bhattacharyya, V.V. Shah, Thin Solid Films 203, 251 (1991)CrossRefGoogle Scholar
  46. 46.
    M. Vanecek, A. Abraham, O. Stika, J. Stuchlik, J. Kocka, Phys. Stat. Sol. A 83, 617 (1984)CrossRefGoogle Scholar
  47. 47.
    H. Hata, S. Wagner, Amorphous Silicon Technology. (Materials Research Society, Pittsburg, 1991). p. 611Google Scholar
  48. 48.
    F. Wang, T. Fischer, T. Muschik, R. Schwarz, Philos. Mag. B 68, 737 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kriti Sharma
    • 1
  • Poonam
    • 2
  • G. S. S. Saini
    • 2
  • S. K. Tripathi
    • 2
  1. 1.Department of PhysicsG.G.D.S.D. CollegeChandigarhIndia
  2. 2.Centre of Advanced Study in Physics, Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations