Effect of rare earth doping on the enhancement of photocatalytic performance of ceria nanocrystals under natural sunlight

  • Madhu Karl Chinnu
  • Pandurangan Anandan
  • Mukannan Arivanandhan
  • Arumugam Venkatesan
  • Rangasamy Mohan Kumar
  • Ramasamy Jayavel


The photocatalytic properties of CeO2, Gd:CeO2 and Sm:CeO2 nanocrystals have been investigated under natural sunlight. The structural and morphological analyses of the synthesized samples were carried out by X-ray powder diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The UV–Vis absorption of pure and doped ceria confirmed the reduction in the band gap values. Fluorescence spectra of CeO2 show strong emission peaks variation at 424 and 466 nm and for rare earth doped ceria at 466 nm. XPS analysis revealed in the composition, Ce4+ to Ce3+ ratio and energy states of the prepared samples. The photocatalytic performance of Sm:CeO2 was relatively high compared to pure and Gd:CeO2 in the degradation of methylene blue dye. The variation in the photocatalytic performance was discussed based on the oxygen vacancy and Ce3+ concentrations. The present study confirmed that the incorporation of rare earth ions increased the oxygen vacancies, which caused changes in Ce4+/Ce3+ ratio thereby enhancing the visible photocatalytic activities.



One of the authors M. Karl Chinnu is grateful to Prof. Forest Shish-Sen Chien, Department of Applied Physics, Songhai University and Ministry of Taiwan Government for Postdoctoral fellowship. The authors are thankful to Nanomaterials laboratory, Research Institute of Electronics, Shizuoka University, Japan for HR-TEM and XPS studies.


  1. 1.
    L. Chen, J. Tina, H. Quid, Ceram. Int. 13, 3422 (2009)Google Scholar
  2. 2.
    M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812 (2002)CrossRefGoogle Scholar
  3. 3.
    X. Wang, W. Zhen, Y. Wang, Z.W. Wang, X. Wang, Y. Bu, J. Zhao, J. Hazard. Mater. 262, 16 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Zhu, L. Fan, P. Lund, Appl. Energy 106, 163 (2013)CrossRefGoogle Scholar
  5. 5.
    D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chem. Soc. Rev. 37, 1568 (2008)CrossRefGoogle Scholar
  6. 6.
    G. Xiao, X. Xin Huang, X. Xuepin Liao, B. Shi, J. Phys. Chem. C 117, 9739 (2013)CrossRefGoogle Scholar
  7. 7.
    Z. Wang, Z. Quan, J. Lin, Inorg. Chem. 46, 5237 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Kundu, N. Sutradhar, R. Thangamuthu, B. Subramanian, A. Panda, J. Nanopart. Res. 14, 1040 (2012)CrossRefGoogle Scholar
  9. 9.
    S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, M.H. Cho, RSC Adv. 4, 16782 (2014)CrossRefGoogle Scholar
  10. 10.
    M.M. Khan, S.A. Ansari, D. Pradhan, D.H. Han, J. Lee, M.H. Cho, J. Phys. Chem. C 118, 9477 (2014)CrossRefGoogle Scholar
  11. 11.
    M.M. Khan, S.A. Ansari, D. Pradhan, D.H. Han, J. Lee, M.H. Cho, Ind. Eng. Chem. Res. 53, 9754 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Li, T. Gu, T. Ming, J. Wang, P. Wang, J. Wang, J.C. Yu, ACS Nano 8, 8152 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Karl Chinnu, K. Vijai Anand, R. Mohan Kumar, T. Alagesan, R. Jayavel, Mater. Lett. 113, 170 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Bae, S. Kim, S. Lee, W. Choi, Catal. Today 224, 21 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Ohtani, Phys. Chem. Chem. Phys. 16, 1788 (2014)CrossRefGoogle Scholar
  16. 16.
    J.M. Buriak, P.V. Kamat, K.S. Schanze, ACS Appl. Mater. Interfaces 6, 11815 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Prado-Gonjal, R. Schmidt, J. Espíndola-Canutoa, P. Ramos-Alvarez, E. Morán, J. Power Sources 209, 163 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Sathyamurthy, K.J. Keith Leonard, R.T. Dabestani, M.P. Paranthaman, Nanotechnology 16, 1960 (2005)CrossRefGoogle Scholar
  19. 19.
    H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, RSC Adv. 2, 12413 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Meng, L. Wang, J. Cui, J. Alloys Compd. 556, 102 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Mandal, K.K. Bando, C. Santra, S. Maity, O. James, D. Mehta, B. Chowdhury, Appl. Catal. A 452, 94 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Sudarsanam, K. Kuntaiah, M.R. Benjaran, New J. Chem. 38, 5991 (2014)CrossRefGoogle Scholar
  23. 23.
    K. Kuntaiah, P. Sudarsanam, M.R. Benjaram, A. Vinu, RSC Adv. 3, 7953 (2013)CrossRefGoogle Scholar
  24. 24.
    M.D. Katherine, P. Rajalekshmi, L.K. Pisane., A.B. Stefaniak, E.M. Sabolsky, S.S. Leonard, Biol. Trace Elem. Res. 166, 96 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Venkatesan, N. Krishna Chandar, A. Kandasamy, M. Karl Chinnu, K.N. Marimuthu, R. Mohan Kumar, R. Jayavel, RSC Adv. 5, 21778 (2015)CrossRefGoogle Scholar
  26. 26.
    B.M. Reddy, L. Katta, G. Thrimurthulu, Chem. Mater. 22, 467 (2010)CrossRefGoogle Scholar
  27. 27.
    B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131, 666 (2012)CrossRefGoogle Scholar
  28. 28.
    P. Ji, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 112, 17809 (2008)CrossRefGoogle Scholar
  29. 29.
    X. Lu, D. Zheng, P. Zhang, C. Liang, P. Liu, Y. Tong, Chem. Commun. 46, 7721 (2010)CrossRefGoogle Scholar
  30. 30.
    A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Younis, D. Chu, S. Li, J. Mater. Chem. A 3, 13970 (2015)CrossRefGoogle Scholar
  32. 32.
    S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, M.H. Cho, Ind. Eng. Chem. Res. 53, 9754 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Torrente-Murciano, A. Gilbank, B. Puertolas, T. Garcia, B. Solsona, D. Chadwick, Appl. Catal. B 132–133, 116 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Aulice Scibioh, S.K. Kim, E.A. Cho, L. Tae-Hoon, S.A. Hong, H. Heung Yong, Appl. Catal. B 84, 773 (2008)CrossRefGoogle Scholar
  35. 35.
    J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C.W. Wong, J. Power Sources 156, 345 (2006)CrossRefGoogle Scholar
  36. 36.
    X. Lu, T. Zhai, H. Cui, J. Shi, S. Xie, Y. Huang, C. Liang, Y. Tong, J. Mater. Chem. 21, 5569 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDr. Ambedkar Government Arts CollegeChennaiIndia
  2. 2.Department of PhysicsThiru Kolanjiappar Government Arts CollegeVriddhachalamIndia
  3. 3.Centre for Nanoscience and TechnologyAnna UniversityChennaiIndia
  4. 4.Department of PhysicsPanimalar Engineering CollegeChennaiIndia
  5. 5.Department of PhysicsPresidency CollegeChennaiIndia

Personalised recommendations