Effects of sintering atmospheres on thermoelectric properties, phase, microstructure and lattice parameters c/a ratio of Al, Ga dual doped ZnO ceramics sintered at high temperature

  • Matiullah
  • C.L. Wang
  • W. B. Su
  • A. Zaman
  • Ikram Ullah
  • J. Z. Zhai
  • D. K. Liu


Thermoelectric properties, phase and microstructural investigation of (Zn1−x−yAlxGay)O, where x = 0.02, y = 0.04, 0.05 and x = 0.03, y = 0.01, 0.02 are studied at a high temperature of 1450 °C in this article. We have focused on the effects of sintering atmospheres on thermoelectric properties, phase, and microstructure in the air as well in the argon atmosphere. The Seebeck coefficient (S) and electrical resistivities (ρ) measured in air and argon atmospheres have an evidential large difference. The air sintered Al, Ga co-doped ZnO has higher power factor (S2σ) of the order 720.9 µW K− 2 m− 1 and lower electrical resistivity (ρ) of 5.803 mΩ cm for the nominal formula (Zn1− x−yAlxGay)O, with x = 0.03, y = 0.01 as compared to the power factor 543.6 µW K− 2 m− 1 and electrical resistivity of the order 1.550 mΩ cm at 692.2 °C sintered in the argon atmosphere at the same temperature i.e. 1450 °C. The power factor of the air sintered sample with x = 0.03, y = 0.01 is 1.4 times higher than the argon sintered sample with the same composition. The difference in power factors and electrical resistivities are linked to sintering atmospheres. We will investigate the effects of sintering atmospheres of the co-doped ZnO and will study thermoelectric properties, phase, and microstructures of the co-doped ZnO.



The authors acknowledge the support extended by the key laboratory of advanced materials and state key laboratory of crystal materials, Shandong University. The financial support provided by the government of China under fundamental research fund (No. 2015TB019), Jinan 250100, People’s Republic of China is also highly acknowledged.


  1. 1.
    Z.L. Wang, J. Song, Science 312, 242 (2006)CrossRefGoogle Scholar
  2. 2.
    J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators B 132, 334 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Jiang, Z. Peng, Y. Zhang, X. Fu, J. Adv. Ceram. 2, 201 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Chem. 7, 85 (1997)CrossRefGoogle Scholar
  5. 5.
    C. Wood, D. Emin, Phys. Rev. B 29, 4582 (1984)CrossRefGoogle Scholar
  6. 6.
    S. Yugo, T. Sato, T. Kimura, Appl. Phys. Lett. 46, 842 (1985)CrossRefGoogle Scholar
  7. 7.
    G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gold, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 8, 4670 (2008)CrossRefGoogle Scholar
  8. 8.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008)CrossRefGoogle Scholar
  9. 9.
    V.F. Litvinenko, A.R. Kopan, Powder Metall. Met. Ceram. 48, 77 (2009)CrossRefGoogle Scholar
  10. 10.
    J.F. Nakahara, T. Takeshita, M.J. Tschetter, B.J. Beaudry, K.A. Gschneidner Jr., J. Appl. Phys. 63, 2331 (1988)CrossRefGoogle Scholar
  11. 11.
    W. Macklin, P. Moseley, Mater. Sci. Eng. B 7, 111 (1990)CrossRefGoogle Scholar
  12. 12.
    T.O. Mason, Mater. Sci. Eng. B 10, 257 (1991)CrossRefGoogle Scholar
  13. 13.
    S. Teehan, H. Efstathiadis, P. Haldar, J. Alloys Compd. 509, 1094 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Bérardan, C. Byl, N. Dragoe., J. Am. Ceram. Soc. 93, 2352 (2010)CrossRefGoogle Scholar
  15. 15.
    K. Park, H.K. Hwang, J.W. Seo, W.S. Seo, Energy 54, 139 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Fang, X.F. Yang, L.P. Peng, K. Zhou, F. Wu, Q.L. Huang, C.Y. Kong, J. Supercond. Nov. Magn. 23, 889 (2010)CrossRefGoogle Scholar
  17. 17.
    D.B. Zhang, B.P. Zhang, D.S. Ye, Y.C. Liu, S. Li, J. Alloys Compd. 656, 784 (2016)CrossRefGoogle Scholar
  18. 18.
    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Deore, G. Jain, Int. J. Nanopart. 7, 57 (2014)CrossRefGoogle Scholar
  20. 20.
    M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 82, 2284 (2003)CrossRefGoogle Scholar
  21. 21.
    O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, A.K. Pradhan, Appl. Phys. Lett. 90, 252108 (2007)CrossRefGoogle Scholar
  22. 22.
    L. Hui, Q. Hong, Y. Mingpeng, C. Xiaobai, Mater. Chem. Phys. 126, 866 (2011)CrossRefGoogle Scholar
  23. 23.
    S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)CrossRefGoogle Scholar
  24. 24.
    H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, E. Savary, J. Eur. Ceram. Soc. 31, 2957 (2011)CrossRefGoogle Scholar
  25. 25.
    L. Han, L.T. Hung, N.V. Nong, N. Pryds, S. Linderoth, J. Electron. Mater. 42, 1573 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Kinemuchi, C. Ito, H. Kaga, T. Aoki., J. Mater. Res. 22, 1942 (2007)CrossRefGoogle Scholar
  27. 27.
    S. Katsuyama, Y. Takagi, M. Ito, K. Majima, H. Nagai, J. Appl. Phys. 92, 1391 (2002)CrossRefGoogle Scholar
  28. 28.
    K.H. Jung, K.H. Li, W.S. Seo, S.M. Choi, Appl. Phys. Lett. 100, 253902 (2012)CrossRefGoogle Scholar
  29. 29.
    J.P. Wiff, Y. Kinemuchi, H. Kaga, C. Ito, K. Watari, J. Eur. Ceram. Soc. 29, 1413 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsShandong UniversityJinanPeople’s Republic of China
  2. 2.School of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China
  3. 3.Department of PhysicsAbdul Wali Khan UniversityMardanPakistan
  4. 4.Department of EnglishGovernment Degree College BakshaliMardanPakistan

Personalised recommendations