Advertisement

Effects of preparation parameters on low temperature formation of TiO2 photocatalysts

  • Shu yuan Chai
  • Ying Fang
  • Yun peng Yu
  • Jia song Yang
Article
  • 60 Downloads

Abstract

The wastewater containing organic pollutants is becoming a worldwide public health issue. Photocatalysis is a promising technology for the degradation of various organic compounds in wastewater treatment and environmental pollution reduction. Most photocatalysts cannot be widely applied due to their poor photo-response in the visible light region, complexity in preparation and difficulty in recycling. Here, we suggest a facile and modified sol–gel method to synthesize TiO2 nanoparticles at a low temperature. X-ray diffraction (XRD), N2 adsorption–desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), FT-IR spectra, and UV–Vis diffuse reflectance spectra were used to investigate the effects of temperature, heat preservation time, and water amount on the crystal structure, the morphologies, and the properties of the samples. That the sample with ratio of the Ti/H2O mol at 1:3 and dried at 180 °C for 6 h showed the most satisfying photocatalytic activity. The average size of this obtained sample was 4.6 nm, the specific surface area was 241.3817 m2/g, and the band gap was 1.84 eV. The reaction rate constant for the methylene orange degradation under visible light irradiation reached 0.09713 min−1 after 60 min.

Notes

Acknowledgements

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Program for Chang Jiang Scholars and Innovative Research Team in University (PCSIRT).

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflicts of interest.

References

  1. 1.
    M.L. Yola, T. Eren, N. Atar et al., Chem. Eng. J. 250, 288 (2014)CrossRefGoogle Scholar
  2. 2.
    V.K. Gupta, T. Eren, N. Atar et al., J. Mol. Liq. 208, 122 (2015)CrossRefGoogle Scholar
  3. 3.
    N.G. Petrik, G.A. Kimmel, J. Phys. Chem. C 113, 4451 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Tanaka, K. Teramura, S. Hosokawa et al., Chem. Sci. 8, 2574 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Yalcin, F. Yakuphanoglu, J. Nanoelectron. Optoelectron. 12, 254 (2017)CrossRefGoogle Scholar
  6. 6.
    H.C. Hung, Y.J. Lin, Z.Y. Ke, J. Mater. Sci. 27, 5059 (2016)Google Scholar
  7. 7.
    M.L. Yola, T. Eren, N. Atar et al., Chem. Eng. J. 242, 333 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Nasir, J. Lei, W. Iqbal et al., Appl. Surf. Sci. 364, 446 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Catalysts 7, 136 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Rajamanickam, P. Dhatshanamurthi, M. Shanthi, Spectrochim. Acta A 138, 489 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, S. Yan, F.U. Lu et al., Chin. J. Catal. 32, 983 (2011)CrossRefGoogle Scholar
  12. 12.
    X. Liu, M. Khan, W. Liu et al., Ceram. Int. 41, 3075 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Liang, A. Wei, Y. Zhang et al., Micro Nano Lett. 11, 539 (2016)CrossRefGoogle Scholar
  14. 14.
    P. Han, B. Sun, S. Cheng et al., J. Alloy. Compd. 664, 619 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Wang, Q. Li, H. Yu et al., J. Alloy. Compd. 578, 419 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Li, L. Wang, T. Hu et al., J. Solid State Chem. 218, 81 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Fischer, A. Gawel, D. Rosen et al., Catalysts 7, 209 (2017)CrossRefGoogle Scholar
  18. 18.
    C.X. Lei, X.L. Jiang, X. Huang et al., Appl. Surf. Sci. 359, 860 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Zheng, S. Bao, Y. Guo et al., Surf. Coat. Technol. 240, 293 (2014)CrossRefGoogle Scholar
  20. 20.
    C.G. Kuo, C.Y. Hsu, S.S. Wang et al., Appl. Surf. Sci. 258, 6952 (2012)CrossRefGoogle Scholar
  21. 21.
    B.S. Huang, H.H. Tseng, E.C. Su et al., J. Nanopart. Res. 17, 1 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Bazrafshan, Z.A. Tesieh, S. Dabirnia et al., Mater. Manuf. Process 31, 119 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Nitayaphat, P. Jirawongcharoen, T. Trijaturon, J. Nat. Fibers 6, 1 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Sun, W.X. Zhao, Y.H. Liu et al., J. Mater. Sci. 25, 4306 (2014)Google Scholar
  25. 25.
    D.X.M. Vargas, J.R. De La Rosa, C.J. Lucio-Ortiz et al., Appl. Catal. B 179, 249 (2015)CrossRefGoogle Scholar
  26. 26.
    B.Z. Tian, C.Z. Li, J.L. Zhang, Chem. Eng. J. 191, 402 (2015)CrossRefGoogle Scholar
  27. 27.
    M.S. Zhu, C.Y. Zhai, L.Q. Qiu et al., Chem. Eng. 3, 3123 (2015)Google Scholar
  28. 28.
    C.F. Lin, C.H. Wu, Z.N. Onn et al., J. Hazard. Mater. 154, 1033 (2008)CrossRefGoogle Scholar
  29. 29.
    Z.K. Zheng, B.B. Huang, X.Y. Qin et al., J. Mater. Chem. 21, 9079 (2011)CrossRefGoogle Scholar
  30. 30.
    X.Y. Xin, T. Xu, J. Yin et al., Appl. Catal. B 176–177, 354 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Tang, J.Y. Zhang, Z. Cheng et al., Mater. Chem. Phys. 77, 314 (2002)CrossRefGoogle Scholar
  32. 32.
    Z. Chen, G. Zhao, H. Li et al., J. Am. Ceram. Soc. 92, 1024 (2009)CrossRefGoogle Scholar
  33. 33.
    H.Z. And, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)Google Scholar
  34. 34.
    J. Zhang, H. Yu, T. Zhou et al., J. Mater. Sci. 50, 1825 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Thomas, Chem. Ing. Tech. 82, 1059 (2010)CrossRefGoogle Scholar
  36. 36.
    A. Mezni, N.B. Saber, M.M. Ibrahim et al., New J. Chem. 41, 5021 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Sun, Y. Kong, Y. Fang et al., Dalton Trans. 46, 15727 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Li, L. Yan, Y.F. Wang et al., J. Mater. Sci. 27, 7834 (2016)Google Scholar
  39. 39.
    D. Tiwari, C. Lalhriatpuia, Lalhmunsiama et al., Appl. Surf. Sci. 353, 275 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Rahim, M.S. Ghamsari, S. Radiman, Sci. Iran 19, 948 (2012)CrossRefGoogle Scholar
  41. 41.
    H. Zhang, Z. Xing, Y. Zhang et al., RSC Adv. 5, 107150 (2015)CrossRefGoogle Scholar
  42. 42.
    H. Gao, S. Yan, J. Wang et al., Dalton Trans. 43, 8178 (2014)CrossRefGoogle Scholar
  43. 43.
    F. Peng, H. Gao, G. Zhang et al., Materials 10, 209 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Zhang, Y. Nosaka, J. Phys. Chem. C 117, 1383 (2013)CrossRefGoogle Scholar
  45. 45.
    C. Bo, L. Jing, X. Qian, Ind. Eng. Chem. Res. 53, 8744 (2014)CrossRefGoogle Scholar
  46. 46.
    Z.J. Chen, G.L. Zhao, H. Li, J. Am. Ceram. Soc. 92, 1024 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shu yuan Chai
    • 1
    • 2
  • Ying Fang
    • 1
    • 2
  • Yun peng Yu
    • 1
    • 2
  • Jia song Yang
    • 1
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations