Advertisement

Gap-dependent magnetic anisotropy and high-frequency property of micro-patterned NiFe film

  • Yan Zhang
  • Bo Dai
  • Jun Li
  • Rui Zhou
  • Hao Zhu
  • Xinxin Zhu
  • Xinxi Li
  • Jiankun Ren
  • Yong Ren
Article
  • 55 Downloads

Abstract

To adjust the high-frequency properties of the soft magnetic film, micro-patterned NiFe films were fabricated on a (100) silicon substrate by using photolithography and magnetron sputtering. Their gap-width were changed from 15 to 60 µm with the strip-length of 5 mm and strip-width of 30 µm. The morphology and magnetic properties of the films were examined by scanning electron microscopy, vibrating sample magnetometer and vector network analysis, respectively. Compared with the continuous NiFe film, the in-plane magnetic anisotropy field (H k ) of micro-patterned NiFe film improved from 0 to 43 Oe. And as the designed gap-width (d) increased from 15 to 60 µm, H k increased from 43 to 80 Oe. The resonance frequency f r is increased up to 8.6 GHz, which is mainly from the demagnetization field and the magnetostatics surface wave energy in our study system. Therefore, the patterned films controlled by various stripe gap-width will also be essential in future high-frequency device design procedures.

Notes

Acknowledgements

This work was supported by the NSF of China (Grant Nos. 11775181 and 11505163), Program for Young Science and Technology Innovation Team of Sichuan Province (No. 2017TD0020), Project of State Key Laboratory Cultivation Base for Non-metal Composites and Functional Materials (Nos. 14tdfk07, 15zxfk10).

References

  1. 1.
    N. Zhu, H.C. Chang, A. Franson, T. Liu, X.F. Zhang, E. Johnston-Halperin, M.Z. Wu, H.X. Tang, Appl. Phys. Lett. 110, 252401 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Yang, X.M. Liu, H.L. Du, N.X. Sun, H. Lin, S.D. Li, AIP Adv. 7, 056301 (2017)CrossRefGoogle Scholar
  3. 3.
    U. Ebels, L. Buda, K. Ounadjela, P.E. Wigen, Phys. Rev. B 63, 174437 (2001)CrossRefGoogle Scholar
  4. 4.
    Y.B. Wang, S.J. Tan, B. Dai, J. Ni, B. Huang, Y. Ren, J. Xu, Z. Wang, J. Mater. Sci.: Mater. Electron. 27, 3778 (2015)Google Scholar
  5. 5.
    L. Zhang, W.B. Zhu, H.Y. Zheng, X. Wang, M. Bi, N. Wang, P.H. Zhou, H.P. Lu, J.L. Xie, L.J. Deng, IEEE Trans. Magn. 51, 1 (2015)Google Scholar
  6. 6.
    R. Lopusnik, J.P. Nibarger, T.J. Silva, Z. Celinski, Appl. Phys. Lett. 83, 96 (2003)CrossRefGoogle Scholar
  7. 7.
    T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)CrossRefGoogle Scholar
  8. 8.
    B. Botters, F. Giesen, J. Podbielski, P. Bach, G. Schmidt, L.W. Molen-kamp, D. Grundler, Appl. Phys. Lett. 89, 242505 (2006)CrossRefGoogle Scholar
  9. 9.
    W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)CrossRefGoogle Scholar
  10. 10.
    T. Wang, S. Zhang, F. Xua, X.M. Ma, J.L. Zhang, F.S. Li, J. Magn. Magn. Mater. 406, 118 (2016)CrossRefGoogle Scholar
  11. 11.
    B. Jamieson, T. OʼDonnell, S. Kulkarni, S. Roy, Appl. Phys. Lett. 96, 202509 (2010)CrossRefGoogle Scholar
  12. 12.
    X. Zhou, G.L. Chua, N. Singh, A.O. Adeyeye, Adv. Funct. Mater. 26, 1437 (2016)CrossRefGoogle Scholar
  13. 13.
    A.V. Chumak, A.A. Serga, B. Hillebrands, M.P. Kostylev, Appl. Phys. Lett. 93, 022508 (2008)CrossRefGoogle Scholar
  14. 14.
    W.P. Zhou, C.L. Ma, Z.X. Gan, Z.M. Zhang, X.X. Wang, W.S. Tan, D.H. Wang, Appl. Phys. Lett. 111, 052401 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Yu, Q.F. Zhan, J.W. Wei, J.B. Wang, G.H. Dai, Z.H. Zuo, X.S. Zhang, Y.W. Liu, H.L. Yang, Y. Zhang, S.H. Xie, B.M. Wang, R.W. Li, Appl. Phys. Lett. 106, 162405 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Li, Y.B. Wang, B. Dai, Y. Ren, Z. Wang, S.J. Tan, J. Ni, J. Mater. Sci.: Mater. Electron. 28, 15313 (2017)Google Scholar
  17. 17.
    T.Y. Ma, F. Xu, J.Y. Jiao, Y. Wang, T. Wang, Appl. Phys. A 122, 172 (2016)CrossRefGoogle Scholar
  18. 18.
    X.M. Han, J.H. Ma, Z. Wang, Y.L. Yao, Y.L. Zuo, L. Xi, D.S. Xue, J. Phys. D: Appl. Phys. 46, 485004 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Ikeda, T. Nagae, Y. Shimada, K.H. Kim, M. Yamaguchi, J. Appl. Phys. 99, 08P507 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Vroubel, Y. Zhuang, B. Rejaei, J.N. Burghartz, A.M. Crawford, S.X. Wang, IEEE Trans. Magn. 40, 2835 (2004)CrossRefGoogle Scholar
  21. 21.
    X. Chen, Y.G. Ma, C.K. Ong, J. Appl. Phys. 104, 013921 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Ren, X.X. Li, Y. Wang, J.K. Ren, Y. Zhang, B. Dai, H.Y. Yan, G.G. Sun, S.M. Peng, Sci. Rep. 6, 31773 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, B. Dai, J. Li, H. Zhu, X.X. Zhu, X.X. Li, J.K. Ren, Y. Ren, J. Alloys Compd. 725, 598 (2017)CrossRefGoogle Scholar
  24. 24.
    O. Acher, A.L. Adenot, Phys. Rev. B 62, 11324 (2000)CrossRefGoogle Scholar
  25. 25.
    S. Ki, J. Dho, Appl. Phys. Lett. 106, 212404 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, M. Li, X. Wang, H.Y. Zheng, N. Wang, J.L. Xie, L.J. Deng, IEEE Magn. Lett. 7, 1 (2016)Google Scholar
  27. 27.
    F. Ania, F.J. Baltá, R.K. Calleja, A. Bayer, I. Tshmel, G.H. Naumann, Michler, J. Mater. Sci. 31, 4199 (1996)CrossRefGoogle Scholar
  28. 28.
    M. Mruczkiewicz, P. Graczyk, P. Lupo, A. Adeyeye, G. Gubbiotti, M. Krawczyk, Phys. Rev. B 96, 104411 (2017)CrossRefGoogle Scholar
  29. 29.
    S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A. Slavin, Y.N. Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Y.A. Filimonov, Y.V. Khivintsev, S.L. Vysotsky, V.K. Sakharov, E.S. Pavlov, Phys.-Usp. 58, 1002 (2015)CrossRefGoogle Scholar
  30. 30.
    X.Y. Zhou, D.S. Yao, C. Hou, R. Chen, H. Shen, J. Magn. Magn. Mater. 438, 1 (2017)CrossRefGoogle Scholar
  31. 31.
    O. Acher, S. Dubourg, Phys. Rev. B 77, 104440 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yan Zhang
    • 1
  • Bo Dai
    • 1
  • Jun Li
    • 1
  • Rui Zhou
    • 1
  • Hao Zhu
    • 1
  • Xinxin Zhu
    • 1
  • Xinxi Li
    • 2
  • Jiankun Ren
    • 2
  • Yong Ren
    • 1
    • 2
  1. 1.State Kay Laboratory Cultivation Base for Nonmetal Composites and Functional MaterialsSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangPeople’s Republic of China

Personalised recommendations