Phase composition and piezoelectric properties of Pb(Sb1/2Nb1/2)–PbTiO3–PbZrO3 ceramics

  • Zhanpeng Zhuo
  • Zhiyuan Ling
  • Yufeng Liu


In general, Pb(Sb1/2Nb1/2)–PbTiO3–PbZrO3 (PSN–PZT) is regarded as a ternary system. However, little information about this system has been reported so far. In this paper, xPb(Sb1/2Nb1/2)O3–(1 − x)Pb(Zr0.54Ti0.46)O3 ceramics were studied systematically by X-ray diffraction, SEM observation and electrical measurements. X-ray diffraction analyses show that PSN is neither perovskite structure nor a single phase structure. PSN–PZT isn’t a ternary system. 6 mol% is the maximum value of PSN to form a single perovskite structure in xPSN–(1 − x)Pb(Zr0.54Ti0.46)O3 ceramics. To alter the Sb/Nb molar ratio, it is found that the solid solubility of Sb3+ ion in Pb(Zr0.54Ti0.46)O3 lattice is much smaller than that of Nb5+ ion and determines the solid solubility of PSN in PZT. For the chemical composition of 0.08PbNbO3–0.92Pb(Zr0.54Ti0.46)O3, excellent properties of ε r  = 2078, tanδ = 2.31%, d 33  = 449 pC/N, k p  = 0.69, Q m  = 65 and T C  = 322 °C can be achieved. These properties are superior to that of all compositions with Sb/Nb = 1/1, indicating that the 1/1 ratio of Sb/Nb isn’t the optimal combination for the best electrical properties.



The authors are thankful to Datong Zhang of South China University of Technology, China, for helping us obtain SEM images and Jingpei Cai of School of Materials Science and Engineering, South China University of Technology, China for helping us obtain XRD data.


  1. 1.
    B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809 (1954)CrossRefGoogle Scholar
  2. 2.
    H. Jaffe, P. Ceramics, J. Am. Ceram. Soc. 41, 494 (1958)CrossRefGoogle Scholar
  3. 3.
    H. Ouchi, K. Nagano, S. Hayakawa, J. Am. Ceram. Soc. 48, 630 (1965)CrossRefGoogle Scholar
  4. 4.
    E.F. Alberta, A.S. Bhalla, T. Takenaka, Ferroelectrics 188, 109 (1996)CrossRefGoogle Scholar
  5. 5.
    M.M. Nadoliisky, T.K. Vassileva, P.B. Vitkov, Ferroelectrics 129, 141 (1992)CrossRefGoogle Scholar
  6. 6.
    M.H. Lee, K.H. Kim, C.K. Yang, in Sixth IEEE International Symposium on Applications of Ferroelectrics, p. 422, (1986)Google Scholar
  7. 7.
    Y. Kawamura, H. Ohuchi, Jpn. J. Appl. Phys. 33, 5332 (1994)CrossRefGoogle Scholar
  8. 8.
    C. Tapaonoi, S. Tashiro, H. Igarashi, Jpn. J. Appl. Phys. 33, 5336 (1994)CrossRefGoogle Scholar
  9. 9.
    H. Ohuchi, Y. Kawamura, Jpn. J. Appl. Phys. 34, 5298 (1995)CrossRefGoogle Scholar
  10. 10.
    N. Ichinose, H. Egami. K. Yokoyama, Y. Tanno, in Abstract Annual Meeting Four Electric Engineering, p. 402, (1969)Google Scholar
  11. 11.
    R.E. Carbonio, J.A. Alonso, J.L. Martínez, J. Phys. Condens. Matter 11, 361 (1999)CrossRefGoogle Scholar
  12. 12.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)CrossRefGoogle Scholar
  13. 13.
    L.E. Cross, Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  14. 14.
    Z. Ling, W. Qiu, K. Wang, Electron. Compon. Mater. 8, 10 (2005)Google Scholar
  15. 15.
    E.G. Fesenko, A.Y. Dantsiger, L.A. Resnitchenko, M.F. Kupriyanov, Ferroelectrics 41, 137 (1982)CrossRefGoogle Scholar
  16. 16.
    L. Wu, C. Wei, T. Wu, C. Teng, J. Phys. C: Solid State Phys. 16, 2803 (1983)CrossRefGoogle Scholar
  17. 17.
    C.H. Wang, Ceram. Int. 30, 605 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Chen, M.P. Harmer, J. Am. Ceram. Soc. 73, 68 (1990)CrossRefGoogle Scholar
  19. 19.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar
  20. 20.
    M. Pereira, A.G. Peixoto, M.J.M. Gomes, J. Eur. Ceram. Soc. 21, 1353 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations