CuCO3 and CuO nanoparticles; facile preparation and evaluation as photocatalysts
- 13 Downloads
Abstract
This work referred to the preparation of CuCO3 nanoparticles (NPs) with definite size and morphology via the simple, fast, cost effective, scale up able direct chemical precipitation method. Also, CuO NPs are prepared via solid state thermal decomposition of the carbonate precursor nano-material. In the first step of the two phase study, CuCO3 and CuO NPs were prepared through an easy approach and in a second step the photocatalytic properties of the two inorganic NPs were evaluated. The preparation of the NPs was performed through the optimized direct precipitation of the carbonate salt and its thermal decomposition to form the oxide NPs. The parameters influencing the properties of the carbonate particles through the direct precipitation method were optimized by the so-called Taguchi experiment design. The optimal CuCO3 NPs were next subjected to a thermal treatment step to form CuO NPs. The produced NPs were studied through X-ray diffraction, scanning electron microscopy, Fourier transform infra-red spectroscopy and thermogravimetry. Further the photocatalytic qualities of the carbonate and oxide NPs in the ultraviolet-induced degradation of methyl orange was monitored and both particles were found to be promising candidates for application in the reaction.
References
- 1.H.R. Rajabi, H. Arjmand, S.J. Hoseini, H. Nasrabadi, J. Magn. Magn. Mater. 394, 7 (2015)CrossRefGoogle Scholar
- 2.M. Roushani, M. Mavaei, H.R. Rajabi, J. Mol. Catal. A 409, 102 (2015)CrossRefGoogle Scholar
- 3.M. Shekofteh-Gohari, A. Habibi-Yangjeh, Solid State Sci. 48, 177 (2015)CrossRefGoogle Scholar
- 4.D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. Mater. Electron. 28, 7784 (2017)CrossRefGoogle Scholar
- 5.D. Dastan, N.B. Chaure, J. Mater. Mech. Manufact. 2, 21 (2014)Google Scholar
- 6.M. Shamsipur, H.R. Rajabi, Spectrochim. Acta A 122, 260 (2014)CrossRefGoogle Scholar
- 7.D.L. Zhao, Q. Yang, Z.H. Han, J. Zhou, S.B. Xu, F.Y. Sun, Solid State Sci. 10, 31 (2008)CrossRefGoogle Scholar
- 8.S.M. Pourmortazavi, I. Kohsari, S.S. Hajimirsadeghi, Cent. Eur. J. Chem. 7, 74 (2009)CrossRefGoogle Scholar
- 9.W.L. Masterson, C.N. Hurley, Chemistry: Principles and Reactions, 5th edn. (Thomson Learning Inc, Belmont, 2004), p. 498Google Scholar
- 10.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, A.A. Davoudi-Dehaghani, S.S. Hajimirsadeghi, M.M. Zahedi, CrystEngComm 15, 4077 (2013)CrossRefGoogle Scholar
- 11.B. Xue, C. Qv, Z. Qian, C. Han, G. Luo, Res. Chem. Intermed. 43, 911 (2017)CrossRefGoogle Scholar
- 12.Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16, 88 (2005)CrossRefGoogle Scholar
- 13.M.H. Habibi, B. Karimi, J. Ind. Eng. Chem. 20, 925 (2014)CrossRefGoogle Scholar
- 14.Z. Jafari, N. Mokhtarian, G. Hosseinzadeh, M. Farhadian, A. Faghihi, F. Shojaie, J. Energy Chem. 25, 393 (2016)CrossRefGoogle Scholar
- 15.M. Barzegar, A. Habibi-Yangjeh, M. Behboudnia, J. Phys. Chem. Solids 70, 1353 (2009)CrossRefGoogle Scholar
- 16.S. Shaker-Agjekandy, A. Habibi-Yangjeh, Mater. Sci. Semicond. Process. 44, 48 (2016)CrossRefGoogle Scholar
- 17.H.R. Rajabi, H. Arjmand, H. Kazemdehdashti, M. Farsi, J. Environ. Chem. Eng. 4, 2830 (2016)CrossRefGoogle Scholar
- 18.M. Pirhashemi, A. Habibi-Yangjeh, Ceram. Int. 41, 14383 (2015)CrossRefGoogle Scholar
- 19.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, J. Mol. Struct. 1074, 85 (2014)CrossRefGoogle Scholar
- 20.S.M. Pourmortazavi, M. Rahimi-Nasrabadi, S.S. Hajimirsadeghi, J. Dispers. Sci. Technol. 33, 254 (2012)CrossRefGoogle Scholar
- 21.S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Mater. Sci. Semicond. Process. 16, 131 (2013)CrossRefGoogle Scholar
- 22.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, Z. Rezvani, K. Adib, M.R. Ganjali, Mater. Manuf. Processes 30, 34 (2015)CrossRefGoogle Scholar
- 23.S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Mater. Manuf. Process. 24, 524 (2009)CrossRefGoogle Scholar
- 24.S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, I. Kohsari, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 746 (2012)CrossRefGoogle Scholar
- 25.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Norouzi, F. Faridbod, M. Sadeghpour Karimi, J. Mater. Sci. Mater. Electron. 27, 12860 (2016)CrossRefGoogle Scholar
- 26.A. Nasiri, M. Nasiri, J. Mater. Sci. Mater. Electron. 28, 9096 (2017)CrossRefGoogle Scholar
- 27.M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, J. Mater. Sci. Mater. Electron. 27, 11873 (2016)CrossRefGoogle Scholar
- 28.F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, M.H. Daneshmand, J. Mater. Sci. Mater. Electron. 27, 9514 (2016)CrossRefGoogle Scholar
- 29.N.A.S. Al-Areqi, A. Al-Alas, A.S.N. Al-Kamali, A.S. Kh, K. Ghaleb, Al-Mureish, J. Mol. Catal. A 381, 1 (2014)CrossRefGoogle Scholar
- 30.V. Vuppala, M.G. Motappa, S.S. Venkata, P.H. Sadashivaiah, Eur. J. Chem. 3, 191 (2012)CrossRefGoogle Scholar
- 31.L. Chenglun, L. Hui, Y. Heping, X. Longjun, J. Mater. Eng. Perform. 24, 771 (2015)CrossRefGoogle Scholar
- 32.M. Rahimi-Nasrabadi, H.R. Naderi, M. Sadeghpour Karimi, F. Ahmadi, S.M. Pourmortazavi, J. Mater. Sci. Mater. Electron. 28, 1877 (2017)CrossRefGoogle Scholar
- 33.M. Rahimi-Nasrabadi, J. Mater. Sci. Mater. Electron. 28, 2200 (2017)CrossRefGoogle Scholar
- 34.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M. Sadeghpour Karimi, P. Novrouzi, J. Mater. Sci. Mater. Electron. 28, 3780 (2017)CrossRefGoogle Scholar
- 35.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M. Sadeghpour Karimi, P. Novrouzi, J. Mater. Sci. Mater. Electron. 28, 5574 (2017)CrossRefGoogle Scholar
- 36.R.K. Roy, A Primer on the Taguchi Method (Van Nostrand Reinhold, NewYork, 1990)Google Scholar
- 37.M. Shamsipur, S.M. Pourmortazavi, S.S. Hajimirsadeghi, M.M. Zahedi, M. Rahimi-Nasrabadi, Ceram. Int. 39, 819 (2013)CrossRefGoogle Scholar
- 38.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, S.A.S. Shandiz, F. Ahmadi, H. Batooli, Nat. Prod. Res. 28, 1964 (2014)CrossRefGoogle Scholar
- 39.M. Rahimi‑Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M. Sadeghpour Karimi, P. Norouzi, J. Mater. Sci. Mater. Electron. 28, 7600 (2017)CrossRefGoogle Scholar
- 40.M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Novrouzi, F. Faridbod, M. Sadeghpour Karimi, J. Mater. Sci. Mater. Electron. 28, 3325 (2017)CrossRefGoogle Scholar
- 41.D. Stoilova, V. Koleva, V. Vassileva, Spectrochim. Acta A 58, 2051 (2002)CrossRefGoogle Scholar
- 42.T.X. Wang, S.H. Xu, F.X. Yang, Powder Technol. 228, 128 (2012)CrossRefGoogle Scholar
- 43.A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374 (2017)CrossRefGoogle Scholar
- 44.S.M. Pourmortazavi, M. Rahimi-Nasrabadi, I. Kohsari, S.S. Hajimirsadeghi, J. Therm. Anal. Calorim. 110, 857 (2012)CrossRefGoogle Scholar
- 45.Y.B. Xie, C.W. Yuan, Appl. Catal. B 46, 251 (2003)CrossRefGoogle Scholar
- 46.L.-J. Chen, G.-S. Li, L.-P. Li, J. Therm. Anal. Calorim. 91, 581 (2008)CrossRefGoogle Scholar
- 47.C. Deng, H. Hu, W. Zhu, C. Han, G. Shao, Mater. Lett. 65, 575 (2011)CrossRefGoogle Scholar
- 48.W. Wang, L. Wang, H. Shi, Y. Liang, CrystEngComm 14, 5914 (2012)CrossRefGoogle Scholar