Efficient P3HT:SWCNTs hybrids as hole transport layer in P3HT:PCBM organic solar cells

  • Burak Y. Kadem
  • Raheem G. Kadhim
  • Hikmat Banimuslem


The effects of non-treated and acid treated single wall carbon nanotubes (SWCNTs) were investigated as hybrids with P3HT and P3HT:PCBM blend using UV–Vis absorption spectra, XRD, AFM, SEM, electrical conductivity as well as photovoltaic characteristics under illumination. The absorption spectra have revealed typical absorption peaks around 520 nm which were attributed to the π–π* transition of P3HT. XRD patterns, SEM and AFM images have shown a change in the hybrids’ structure; the crystallinity peaks were noticeably affected by the addition of SWCNTs, while the morphological investigations have revealed clear features at the organic surface films after treated with SWCNTs. The photovoltaic performance have revealed an increase in the power conversion efficiency (PCE) from 1.52% in the reference P3HT:PCBM-based device to 2.52% in the P3HT:PCBM device with P3HT:SWCNTs as hole transport layer. This enhancement has been ascribed to the increase in the short circuit current density which is associated to an increase in the electrical conductivity. The results have confirmed the ability of SWCNTS to transport holes as it is for electrons; the conjugated polymer twisted around the nanotubes and blocks the way from the electrons and transfer hole.



The author would like to acknowledge the Materials and Engineering Research Institute (MERI), Sheffield Hallam University in UK for the SEM, AFM and solar cell characterisation.


  1. 1.
    S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Goh, R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.M. Fréchet, Molecular-weight-dependent mobilities in regioregular poly (3-hexyl-thiophene) diodes. Appl. Phys. Lett. 86, 122110 (2005)CrossRefGoogle Scholar
  3. 3.
    T.W. Lee, Investigation on the Low luminous efficiency in a polymer light-emitting diode with a high work-function cathode by soft contact lamination. Adv. Funct. Mater. 17, 3128–3133 (2007)CrossRefGoogle Scholar
  4. 4.
    T.W. Lee, Y. Chung, O. Kwon, J.J. Park, Self-organized gradient hole injection to improve the performance of polymer electroluminescent devices. Adv. Funct. Mater. 17, 390–396 (2007)CrossRefGoogle Scholar
  5. 5.
    Y.D. Park, D.H. Kim, J.A. Lim, J.H. Cho, Y. Jang, W.H. Lee, J.H. Park, K. Cho, Enhancement of field-effect mobility and stability of poly (3-hexylthiophene) field-effect transistors by conformational change. J. Phys. Chem. C 112, 1705–1710 (2008)CrossRefGoogle Scholar
  6. 6.
    I. McCulloch, C. Bailey, M. Giles, M. Heeney, I. Love, M. Shkunov, D. Sparrowe, S. Tierney, Influence of molecular design on the field-effect transistor characteristics of terthiophene polymers. Chem. Mater. 17, 1381–1385 (2005)CrossRefGoogle Scholar
  7. 7.
    C.L. Chochos, S.P. Economopoulos, V. Deimede, V.G. Gregoriou, M.T. Lloyd, G.G. Malliaras, J.K. Kallitsis, Synthesis of a soluble n-type cyano substituted polythiophene derivative: a potential electron acceptor in polymeric solar cells. J. Phys. Chem. C 111, 10732–10740 (2007)CrossRefGoogle Scholar
  8. 8.
    F.C. Chen, Y.K. Lin, C.J. Ko, Submicron-scale manipulation of phase separation in organic solar cells. Appl. Phys. Lett. 92, 16 (2008)Google Scholar
  9. 9.
    S.N. Clafton, D.M. Huang, W.R. Massey, T.W. Kee, Femtosecond dynamics of excitons and hole-polarons in composite P3HT/PCBM nanoparticles. J. Phys. Chem. B 117, 4626–4633 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Roy, A. Jha, J. Dasgupta, Photoinduced charge generation rates in soluble P3HT:PCBM nano-aggregates predict the solvent-dependent film morphology. Nanoscale 8, 2768–2777 (2016)CrossRefGoogle Scholar
  11. 11.
    J.A. Reinspach, Y. Diao, G. Giri, T. Sachse, K. England, Y. Zhou, C. Tassone, B.J. Worfolk, M. Presselt, M.F. Toney, S. Mannsfeld, Tuning the morphology of solution-sheared P3HT:PCBM films. ACS Appl. Mater. Interfaces 8, 1742–1751 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Chalal, R. Garuz, D. Benachour, J. Bouclé, B. Ratier, Influence of an electrode self-protective architecture on the stability of inverted polymer solar cells based on P3HT:PCBM with an active area of 2 cm2. Synth. Met. 212, 161–166 (2016)CrossRefGoogle Scholar
  13. 13.
    B.Y. Kadem, M.K. Al-hashimi, A.K. Hassan, The effect of solution processing on the power conversion efficiency of P3HT-based organic solar cells. Energy Proced. 50, 237–245 (2014)CrossRefGoogle Scholar
  14. 14.
    B. Kadem, A. Hassan, W. Cranton, Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci.: Mater. Electron. 27, 7038–7048 (2016)Google Scholar
  15. 15.
    M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Geng, T. Zeng, Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 128, 16827–16833 (2006)CrossRefGoogle Scholar
  17. 17.
    E. Kymakis, G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002)CrossRefGoogle Scholar
  18. 18.
    E. Kymakis, I. Alexandrou, G.A.J. Amaratunga, High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 93, 1764–1768 (2003)CrossRefGoogle Scholar
  19. 19.
    B.J. Landi, R.P. Raffaelle, S.L. Castro, S.G. Bailey, Single-wall carbon nanotube–polymer solar cells. Prog. Photovolt.: Res. Appl. 13, 165–172 (2005)CrossRefGoogle Scholar
  20. 20.
    B.J. Landi, S.L. Castro, H.J. Ruf, C.M. Evans, S.G. Bailey, R.P. Raffaelle, CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol. Energy Mater. Sol. Cells 87, 733–746 (2005)CrossRefGoogle Scholar
  21. 21.
    S.H. Hur, D.Y. Khang, C. Kocabas, J.A. Rogers, Nanotransfer printing by use of noncovalent surface forces: applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Appl. Phys. Lett. 85, 5730–5732 (2004)CrossRefGoogle Scholar
  22. 22.
    B. Kadem, A. Hassan, M. Göksel, T. Basova, A. Şenocak, E. Demirbaş, M. Durmuş, High performance ternary solar cells based on P3HT:PCBM and ZnPc-hybrids. RSC Adv. 6, 93453–93462 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Wang, K.S. Fernando, Y. Lin, M.J. Meziani, L.M. Veca, L. Cao, P. Zhang, M.M. Kimani, Y.P. Sun, Metallic single-walled carbon nanotubes for conductive nanocomposites. J. Am. Chem. Soc. 130, 1415–1419 (2008)CrossRefGoogle Scholar
  24. 24.
    T.J. Savenije, J.E. Kroeze, X. Yang, J. Loos, The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene–fullerene bulk heterojunction. Adv. Funct. Mater. 15, 1260–1266 (2005)CrossRefGoogle Scholar
  25. 25.
    Q. Zhang, T.P. Russell, T. Emrick, Synthesis and characterization of CdSe nanorods functionalized with regioregular poly (3-hexylthiophene). Chem. Mater. 19, 3712–3716 (2007)CrossRefGoogle Scholar
  26. 26.
    I.W. Hwang, D. Moses, A.J. Heeger, Photoinduced carrier generation in P3HT/PCBM bulk heterojunction materials. J. Phys. Chem. C 112, 4350–4354 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67, 296–305 (2007)CrossRefGoogle Scholar
  28. 28.
    T. Schuettfort, A. Nish, R.J. Nicholas, Observation of a type II heterojunction in a highly ordered polymer—carbon nanotube nanohybrid structure. Nano Lett. 9, 3871–3876 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Ren, M. Bernardi, R.R. Lunt, V. Bulovic, J.C. Grossman, S. Gradecak, Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties. Nano Lett. 11, 5316–5321 (2011)CrossRefGoogle Scholar
  30. 30.
    N.M. Dissanayake, Z. Zhong, Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic. Nano Lett. 11, 286–290 (2010)CrossRefGoogle Scholar
  31. 31.
    S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Fullerene pipes. Science 280, 1253–1256 (1998)CrossRefGoogle Scholar
  33. 33.
    R. Ramani, S. Alam, A comparative study on the influence of alkyl thiols on the structural transformations in P3HT/PCBM and P3OT/PCBM blends. Polymer 54, 6785–6792 (2013)CrossRefGoogle Scholar
  34. 34.
    B.Y. Kadem, A.K. Hassan, W. Cranton, Enhancement of power conversion efficiency of P3HT:PCBM solar cell using solution processed Alq3 film as electron transport layer. J. Mater. Sci.: Mater. Electron. 26, 3976–3983 (2015)Google Scholar
  35. 35.
    A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40, 1721–1725 (2001)CrossRefGoogle Scholar
  36. 36.
    J. Geng, B.S. Kong, S.B. Yang, S.C. Youn, S. Park, T. Joo, H.T. Jung, Effect of SWNT defects on the electron transfer properties in P3HT/SWNT hybrid materials. Adv. Funct. Mater. 18, 2659–2665 (2008)CrossRefGoogle Scholar
  37. 37.
    R. Geethu, C.S. Kartha, K.P. Vijayakumar, Improving the performance of ITO/ZnO/P3HT:PCBM/Ag solar cells by tuning the surface roughness of sprayed ZnO. Sol. Energy 120, 65–71 (2015)CrossRefGoogle Scholar
  38. 38.
    Y.S. Kim, Y. Lee, J.K. Kim, E.O. Seo, E.W. Lee, W. Lee, S.H. Han, S.H. Lee, Effect of solvents on the performance and morphology of polymer photovoltaic devices. Curr. Appl. Phys. 10, 985–989 (2010)CrossRefGoogle Scholar
  39. 39.
    T. Salim, H.W. Lee, L.H. Wong, J.H. Oh, Z. Bao, Y.M. Lam, Semiconducting carbon nanotubes for improved efficiency and thermal stability of polymer–fullerene solar cells. Adv. Funct. Mater. 26, 51–65 (2016)CrossRefGoogle Scholar
  40. 40.
    J.H. Park, J.S. Kim, J.H. Lee, W.H. Lee, K. Cho, Effect of annealing solvent solubility on the performance of poly (3-hexylthiophene)/methanofullerene solar cells. J. Phys. Chem. C 113, 17579–17584 (2009)CrossRefGoogle Scholar
  41. 41.
    T.L. Benanti, D. Venkataraman, Organic solar cells: an overview focusing on active layer morphology. Photosynth. Res. 87, 73–81 (2006)CrossRefGoogle Scholar
  42. 42.
    C. Gong, H.B. Yang, Q.L. Song, C.M. Li, Nanostructure effect of V2O5 buffer layer on performance of polymer-fullerene devices. Org. Electron. 13, 7–12 (2012)CrossRefGoogle Scholar
  43. 43.
    F. Reisdorffer, O. Haas, P. Le Rendu, T.P. Nguyen, Co-solvent effects on the morphology of P3HT:PCBM thin films. Synth. Met. 161, 2544–2548 (2012)CrossRefGoogle Scholar
  44. 44.
    L.H.D. Skjolding, C. Spegel, A. Ribayrol, J. Emnéus, L. Montelius, Characterisation of nano-interdigitated electrodes. J. Phys. Conf. Ser. 100(5), 052045 (2008)CrossRefGoogle Scholar
  45. 45.
    B. Kadem, W. Cranton, A. Hassan, Metal salt modified PEDOT:PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron. 24, 73–79 (2015)CrossRefGoogle Scholar
  46. 46.
    B. Kadem, M. Göksel, A. Şenocak, E. Demirbaş, D. Atilla, M. Durmuş, T. Basova, K. Shanmugasundaram, A. Hassan, Effect of covalent and non-covalent linking on the structure, optical and electrical properties of novel zinc(II) phthalocyanine functionalized carbon nanomaterials. Polyhedron 110, 37–45 (2016)CrossRefGoogle Scholar
  47. 47.
    H. Derbal-Habak, C. Bergeret, J. Cousseau, J.M. Nunzi, Improving the current density Jsc of organic solar cells P3HT:PCBM by structuring the photoactive layer with functionalized SWCNTs. Sol. Energy Mater. Sol. Cells 95, S53–S56 (2011)CrossRefGoogle Scholar
  48. 48.
    P. Robaeys, F. Bonaccorso, E. Bourgeois, J. D’Haen, W. Dierckx, W. Dexters, D. Spoltore, J. Drijkoningen, J. Liesenborgs, A. Lombardo, A.C. Ferrari, Enhanced performance of polymer: fullerene bulk heterojunction solar cells upon graphene addition. Appl. Phys. Lett. 105, 136–131 (2014)CrossRefGoogle Scholar
  49. 49.
    G. Yue, J. Wu, Y. Xiao, H. Ye, J. Lin, M. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chin. Sci. Bull. 56, 325–330 (2011)CrossRefGoogle Scholar
  50. 50.
    B. Qi, J. Wang, Open-circuit voltage in organic solar cells. J. Mater. Chem. 22, 24315–24325 (2012)CrossRefGoogle Scholar
  51. 51.
    F. Lan, G. Li, Direct observation of hole transfer from semiconducting polymer to carbon nanotubes. Nano Lett. 13, 2086–2091 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Polymer Lab, Physics Department, College of ScienceUniversity of BabylonBabilIraq

Personalised recommendations