A comparative study of MnO2 and composite MnO2–Ag nanostructures prepared by a hydrothermal technique on supercapacitor applications

  • Authit Phakkhawan
  • Pawinee Klangtakai
  • Apiwat Chompoosor
  • Samuk Pimanpang
  • Vittaya Amornkitbamrung


Pure MnO2 and composite MnO2–Ag electrodes with four different structures were synthesized via a hydrothermal process. Tube, urchin, rod and wire/sphere-like structures were obtained from the addition of HCl, H2SO4, (NH4)2S2O8 or CO(NH2)2 reagents into potassium permanganate solutions, respectively. The crystal structure of the MnO2 particles was examined using X-ray diffraction and transmission electron microscopy, revealing an α-phase MnO2. Specific capacitance values of 74.5, 111.7, 103.4 and 204.1 F g−1 at a charge/discharge current density of 0.3 A g−1 were obtained for tube, urchin, rod and wire/sphere-like pure MnO2 structures, respectively. The wire/sphere-like structure delivered the highest specific capacitance owing to its largest specific surface area (164.60 m2 g−1). The specific capacitances were further increased to 96.6, 210.9 and 186.4 F g−1, respectively, for tube, urchin and rod-like structures after Ag addition. Additionally, the capacitance retention of the rod and wire/sphere-like composite MnO2–Ag films were also prolonged because Ag nanoparticles prevented the aggregation and/or decomposition of MnO2.



This work was financially supported through the Advanced Functional Materials Cluster of Khon Kaen University, by Nanotec KKU Excellence Center on Advanced Nanomaterials for Energy Production and Storage, by the Integrated Nanotechnology Research Center, Khon Kaen University, Thailand, by the Toray Science Foundation (TTSF), by the Thailand Research Fund (Contract No. TRG5780142), by National Research Council of Thailand (NRCT) (Contract No. 600057), by Ministry of Energy and National Science and Technology Development Agency (NSTDA) (Conctract No. P-17-50627) and the Thailand Center of Excellence in Physics (ThEP). A. Phakkhawan would like to thank the Development and Promotion of Science and Technology Talents Project (DPST) for funding and the Graduate School, Khon Kaen University for Research Scholarships they provided.

Supplementary material

10854_2018_8973_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2270 KB)


  1. 1.
    S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng, M.S. Javed, Appl. Surf. Sci. 356, 259–265 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Wei, J. Wang, S. Yang, Y. Zhang, T. Li, S. Zhao, Physica E 83, 41–46 (2016)CrossRefGoogle Scholar
  3. 3.
    D.S. Dhawale, A. Vinu, C.D. Lokhand, Electrochem. Acta 56, 9482–9487 (2011)CrossRefGoogle Scholar
  4. 4.
    Y.M. Dai, S.C. Tang, Z.X. Ba, S.S. Zhu, Q. Wang, C. Wang, X.K. Meng, Mater. Lett. 117, 104–107 (2014)CrossRefGoogle Scholar
  5. 5.
    S.R. Srither, A. Karthik, D. Murugesan, S. Arunmetha, M. Selvam, V. Rajendran, Front. Nanosci. Nanotech. 1, 13–20 (2015)CrossRefGoogle Scholar
  6. 6.
    N. Li, X. Zhu, C. Zhang, L. Lai, R. Jiang, J. Zhu, J. Alloy. Comp. 692, 26–33 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, Y. Meng, P. Jiaig, J. Power Sources 259, 219–226 (2014)CrossRefGoogle Scholar
  8. 8.
    K.W. Nam, K.H. Kim, E.S. Lee, W.S. Yoon, X.Q. Yang, K.B. Kim, J. Power Sources 182, 642–652 (2008)CrossRefGoogle Scholar
  9. 9.
    M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V.S. Rao, B.V.R. Chowdari, Adv. Funct. Mater. 17, 2792–2799 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Xia, Y.S. Meng, G. Yuan, C. Cui, L. Lu, Electrochem. Solid-State Lett. 15, A60-A63 (2012)Google Scholar
  11. 11.
    Y. Zhang, C. Sun, P. Lu, K. Li, S. Song, D. Xue, Cryst. Eng. Comm. 14, 5892–5897 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Xia, Y. Wang, J. Lin, L. Lu, Nanoscale Res. Lett. 7, 33–43 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Kim, H. Ju, A.I. Inamdar, Y. Jo, J. Han, H. Kim, H. Im, Energy 70, 1–5 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Xu, L. Kong, H. Li, J. Phys. Chem. C 111, 19141–19147 (2007)CrossRefGoogle Scholar
  15. 15.
    Z. Li, Y. Ding, Y. Xiong, Y. Xie, Cryst. Growth Des. 5, 1953–1958 (2005)CrossRefGoogle Scholar
  16. 16.
    X.C. Song, Y. Zhao, Y.F. Zheng, Cryst. Growth Des. 7, 159–162 (2007)CrossRefGoogle Scholar
  17. 17.
    W.N. Li, J. Yuan, X.F. Shen, S.G. Mower, L.P. Xu, S. Sithambaram, M. Aindow, S.L. Suib, Adv. Funct. Mater. 16, 1247–1253 (2006)CrossRefGoogle Scholar
  18. 18.
    Y. Li, J. Wang, Y. Zhang, M.N. Banis, J. Liu, D. Geng, R. Li, X. Sun, J. Colloid Interface Sci. 369, 123–128 (2012)CrossRefGoogle Scholar
  19. 19.
    D. Portehault, S. Cassaignon, E. Baudrin, J.P. Jolivet, Chem. Mater. 19, 5410–5417 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Li, Z. Qu, Y. Qin, H. Wang, Appl. Surf. Sci. 385, 234–240 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Kim, B.N. Popov, J. Electrochem. Soc. 150, D56-D62 (2003)Google Scholar
  22. 22.
    K.R. Prasad, N. Miura, Electrochem. Commun. 6, 1004–1008 (2004)CrossRefGoogle Scholar
  23. 23.
    D.P. Dubal, W.B. Kim, C.D. Lokhande, J. Phys. Chem. Solids 73, 18–24 (2012)CrossRefGoogle Scholar
  24. 24.
    A.A.F. Grupioni, E. Arashiro, T.A.F. Lassali, Electrochem. Acta 48, 407–418 (2002)CrossRefGoogle Scholar
  25. 25.
    X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang, J. Zhang, Appl. Energy 134, 439–445 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Heydari, M.B. Gholivand, Imp. J. Interdiscip. Res. 3, 2137–2141 (2017)Google Scholar
  27. 27.
    Y. Wang, I. Zhitomirsky, Mater. Lett. 65, 1759–1761 (2011)CrossRefGoogle Scholar
  28. 28.
    G. Zhang, L. Zheng, M. Zhang, S. Guo, Z.H. Liu, Z. Yang, Z. Wang, Energy Fuels 26, 618–623 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Liu, N. Wang, M. Yao, C. Yang, W. Hu, S. Komarneni, J. Porous Mater 24, 1717–1723 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Xia, C. Hong, X. Shi, B. Li, G. Yuan, Q. Yao, J. Xie, J. Mater. Chem. A 3, 1216–1221 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Lu, D. Yan, L. Chen, G. Zhu, H. Xu, A. Yu, Mater. Lett. 168, 40–43 (2016)CrossRefGoogle Scholar
  32. 32.
    C.T. Hsieh, D.Y. Tzou, W.Y. Lee, J.P. Hsu, J. Alloys Compd. 660, 99–107 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, J. Phys. Chem. B 109, 20207–20214 (2005)CrossRefGoogle Scholar
  34. 34.
    J.W. Wang, Y. Chen, B.Z. Chen, J. Alloy. Comp. 688, 184–197 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Li, H. Feng, J. Li, J. Jiang, Y. Feng, L. He, D. Qian, Electrochem. Acta 176, 827–835 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Authit Phakkhawan
    • 1
  • Pawinee Klangtakai
    • 1
    • 2
    • 3
    • 4
  • Apiwat Chompoosor
    • 5
  • Samuk Pimanpang
    • 2
    • 3
    • 4
    • 6
  • Vittaya Amornkitbamrung
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and StorageKhon KaenThailand
  3. 3.Integrated Nanotechnology Research CenterKhon KaenThailand
  4. 4.Thailand Center of Excellence in Physics, Commission on Higher EducationBangkokThailand
  5. 5.Department of Chemistry, Faculty of ScienceRamkhamhaeng UniversityBangkokThailand
  6. 6.Department of Physics, Faculty of ScienceSrinakharinwirot UniversityBangkokThailand

Personalised recommendations