Synthesis and characterization of YIG nanoparticles by low temperature sintering

  • Haiyan Li
  • Yuheng Guo


Bi substituted YIG ferrite has been extensively researched because of its high electrical resistivity, high permeability and low processing cost. Therefore, it is particularly suitable for large-scale industrial production to make a variety of devices. In order to carry out low temperature sintering (below the silver melting point of 961 °C) for industrial production, the new technology of Bi substitution YIG by low temperature sintering was used. In this paper, Bi substituted YIG nanoparticles Y3−xBixFe5O12 (x = 0.4–1.2) were prepared by low temperature co-fired ceramics technology (LTCC). XRD displayed the growth of the pure phase. DSC, TEM, VSM and FMR revealed that crystallinity, shape, size and the sintering temperature were obviously related to Bi content. The result proved that the addition of Bi can obviously decrease the sintering temperature of phase formation and change magnetic properties. The turning point (x = 0.85) was the best Bi content. At this point, Ms and Hc reached maximum value and magnetic loss was minimal. Finally, by exploring resonance mechanism, we found that the Fano theory was the more suitable for fitting FMR asymmetry than Lorentzian, and obtained ∆H accurately.



This work was supported by the National Natural Science Foundation of China (No. 51132003).


  1. 1.
    S. Khanra, A. Bhaumik, Y.D. Kolekar, P. Kahol, K. Ghosh, J. Magn. Magn. Mater. 14, 369 (2014)Google Scholar
  2. 2.
    D. Eliyahu, L. Maleki, Int. Microw. Sym. Dig. 3, 2185–2187 (2003)Google Scholar
  3. 3.
    B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, Phys. Rev. Lett. 6, 107 (2011)Google Scholar
  4. 4.
    A.A. Serga, A.V. Chumak, B. Hillebrands, J. Phys. D Appl. Phys. 43, 26 (2010)CrossRefGoogle Scholar
  5. 5.
    C.L. Ordonez Romero, O. Kolokoltsev, I. Gomez Arista, Bull. Am. Phys. Soc. 59 (2014)Google Scholar
  6. 6.
    M.G. Cottam, P.X. Zhang, D.J. Lockwood, Solid State Commun. 92, 12 (1994)CrossRefGoogle Scholar
  7. 7.
    M. Ristić, I. Nowik, S. Popović, I. Felner, S. Musić, Mater. Lett. 57, 16 (2003)Google Scholar
  8. 8.
    S. Kimura, I. Shindo, J. Cryst. Growth 41, 192–198 (1977)CrossRefGoogle Scholar
  9. 9.
    T.-T. Liu, M.-H. Wang, H.-P. Zhang, J. Mater. Sci. Mater. Electron. 8, 45 (2016)Google Scholar
  10. 10.
    L.M. Yang, Z.F. Zhang, J. Mater. Sci. Mater. Electron. 12, 42 (2013)Google Scholar
  11. 11.
    K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C.P. Wong, J. Mater. Sci. Mater. Electron. 2, 34 (2005)Google Scholar
  12. 12.
    K. Niihara, J. Ceram. Soc. Jpn. 99, 974–982 (1991)CrossRefGoogle Scholar
  13. 13.
    K. Kawano, M. Kotsugi, T. Ohkochi, J. Magn. Magn. Mater. 57, 361 (2014)Google Scholar
  14. 14.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn (Wiley, Hoboken, 2009), p. 326Google Scholar
  15. 15.
    V.N. Astratov, D.M. Whittaker, I.S. Culshaw, R.M. Stevenson, M.S. Skolnick, T.F. Krauss, R.M. De La Rue, Phys. Rev. B 60, 16255 (1999)CrossRefGoogle Scholar
  16. 16.
    S. Fan, J.D. Joannopolulos, Phys. Rev. 65, 235112 (2002)CrossRefGoogle Scholar
  17. 17.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)CrossRefGoogle Scholar
  18. 18.
    X. Yang, C. Husko, C.W. Wong, M. Yu, D.L. Kwong, Appl. Phys. Lett. 91, 051113 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsJincheng College of Sichuan UniversityChengduChina
  2. 2.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations