Skip to main content
Log in

A comparative study on direct Cu–Cu bonding methodologies for copper pillar bumped flip-chips

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper pillar micro bump is one of the platform technologies, which is essentially required for 2.5D/3D chip stacking and high-density electronic components. In this study, Cu–Cu direct thermo-compression bonding (TCB) and anisotropic conductive paste (ACP) bonding methods are proposed for Ø 100 µm Cu-pillar bumped flip-chips. The process parameters including bonding temperature, bonding pressure and time are verified by die shear test and SEM/EDX cross-sectional analysis. The optimal bonding condition for TCB with regards to bonding pressure was defined to be 0.5N/bump at 300 °C or 0.3N/bump at 360 °C. In the case of ACP bonding, the minimum bonding pressure was about 0.3N/bump for gaining a seamless bonding interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.W. Lee, 3-D hetero-integration technologies for multifunctional convergence systems. J. Microelectron. Packag. Soc. 22, 11–19 (2015)

    Article  Google Scholar 

  2. M. Gerber, C. Beddingfield, S. O’Connor, M. Yoo, M.J. Lee, D.B. Kang, S.S. Park, C. Zwenger, R. Darveaux, R. Lanzone, K.R. Park, Next generation fine pitch Cu Pillar technology—enabling next generation silicon nodes, Electronic Components and Technology Conference (ECTC), IEEE 61st, pp. 612–618 (2011)

  3. K.Y. Au, F.X. Che, J.L. Aw, J.K. Lin, B. Boehme, F. Kuechenmeister, Thermo-compression bonding assembly process and reliabilty studies of Cu pillar bump on Cu/Low-K Chip, Electronic Components and Technology Conference (ECTC), IEEE 16th, pp. 574–578 (2014)

  4. C.S. Tan, D.F. Lim, X.F. Ang, J. Wei, K.C. Leong, Low temperature Cu Cu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement. Microelectron. Reliab. 52, 321–324 (2012)

    Article  Google Scholar 

  5. A. Shigetou, T. Itoh, M. Matsuo, N. Hayasaka, K. Okumura, T. Suga, Bumpless interconnect through ultrafine Cu electrodes by means of surface-activated bonding (SAB) method. IEEE Trans. Adv. Packag. 29(2), 218–226 (2006)

    Article  Google Scholar 

  6. R. He, M. Fujino, M. Akaike, T. Suga, Cu/adhesive hybrid bonding at 180 °C in H-containing HCOOH Vapor ambient for 2.5D/3D integration, Electronic Components and Technology Conference (ECTC), IEEE 67st, pp. 1243–1248 (2017)

  7. Y.S. Tang, Y.J. Chen, K.N. Chen, Wafer-level Cu–Cu bonding technology. Microelectron. Reliab. 52, 312–320 (2012)

    Article  Google Scholar 

  8. R.I. Made, P. Lan, H.Y. Li, C.L. Gan, C.S. Tan, Effect of direct current stressing to Cu–Cu bond interface imperfection for three dimensional integrated circuits. Microelectron. Eng. 106, 149–154 (2013)

    Article  Google Scholar 

  9. Z. Zhang, C.P. Wong, Recent advances in flip-chip underfill: materials, process, and reliability. IEEE Trans. Adv. Packag. 27(3), 515–524 (2004)

    Article  Google Scholar 

  10. S.H. Lee, J. Sung, S.E. Kim, Dynamic flow measurements of capillary underfill through a bump array in flip chip package. Microelectron. Reliab. 50, 2078–2083 (2010)

    Article  Google Scholar 

  11. Y.B. Kim, J. Sung, Capillary-driven micro flows for the underfill process in microelectronics packaging. J. Mech. Sci. Technol. 26(12), 3751–3759 (2012)

    Article  Google Scholar 

  12. T.F. Yang, K.S. Kao, R.C. Cheng, J.Y. Chang, C.J. Zhan, Evaluation of Cu/SnAg microbump bonding processes for 3D integration using wafer-level underfill film. Solder. Surf. Mt. Technol. 24, 287–293 (2012)

    Article  Google Scholar 

  13. J.S. Lee, J.K. Kim, M.S. Kim, N. Kang, J.H. Lee, Reliability of flip-chip bonded RFID die using anisotropic conductive paste hybrid material. Trans. Nonferrous Met. Soc. China 21, 175–181 (2011)

    Article  Google Scholar 

  14. M.A. Uddin, M.O. Alam, Y.C. Chan, H.P. Chan, Adhesion strength and contact resistance of flip chip on flex packages-effect of curing degree of anisotropic conductive film. Microelectron. Reliab. 44, 505–514 (2004)

    Article  Google Scholar 

  15. M. Teo, S.G. Mhaisalkar, E.H. Wong, P.S. Teo, C.C. Wong, K. Ong, C.F. Goh, K.L. Teh, Correlation of material properties to reliability performance of anisotropic conductive adhesive flip chip packages. IEEE Trans. Compon. Packag. Technol. 28(1), 157–164 (2005)

    Article  Google Scholar 

  16. J. Fan, C.S. Tan, Low temperature wafer-level metal thermo-compression bonding technology for 3D integration, in Metallurgy—Advances in Materials and Processes, ed. by Y. Pardhi (Intech, Rijeka, 2012)

    Google Scholar 

  17. MIL-STD-883E, Test method standard—Microcircuits, USA, (1996)

Download references

Acknowledgements

This project has been supported by the COMET K1 center ASSIC (Austrian Smart Systems Integration Research Center). The COMET (Competence Centers for Excellent Technologies) Program is supported by BMVIT, BMWFW and the federal provinces of Carinthia and Styria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Roshanghias, A. & Binder, A. A comparative study on direct Cu–Cu bonding methodologies for copper pillar bumped flip-chips. J Mater Sci: Mater Electron 29, 9347–9353 (2018). https://doi.org/10.1007/s10854-018-8965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8965-8

Navigation