Advertisement

Structure and electric properties of NaxLa(2−x)/3Cu3Ti4O12 ceramics prepared by sol–gel method

  • Zhanqing Liu
  • Zupei Yang
Article
  • 54 Downloads

Abstract

The NaxLa(2−x)/3Cu3Ti4O12 (x = 0.50, 0.35, 0.20, 0.05) ceramics were designed on the premise of charge balance and were prepared by the sol–gel method. The phase structure, microstructure, electric properties of the NaxLa(2−x)/3Cu3Ti4O12 (x = 0.50, 0.35, 0.20, 0.05) ceramics were investigated. The results indicated that with the decreasing of x, the NaxLa(2−x)/3Cu3Ti4O12 (x = 0.50, 0.35, 0.20, 0.05) ceramics showed different microstructure and electrical behaviors. When x = 0.35, the NaxLa(2−x)/3Cu3Ti4O12 ceramics showed the biggest dielectric constant, but still kept the lower dielectric losses. When x = 0.20 and 0.05, the dielectric losses of NaxLa(2−x)/3Cu3Ti4O12 (x = 0.20, 0.05) ceramics were decreased, which were consistent with the primary aim of the present study. However, the dielectric constant of NaxLa(2−x)/3Cu3Ti4O12 (x = 0.20, 0.05) ceramics also were decreased, which was an unwanted result. In addition, with the decreasing of x, the second step-like increases and small peaks (A2) in the curses of dielectric constant-temperature, and the second relaxation peaks (a2) in the electric modulus analysis gradually weaken and finally disappeared. The conduction characteristics of NaxLa(2−x)/3Cu3Ti4O12 (x = 0.50, 0.35, 0.20, 0.05) ceramics had changed from two linear area to a linear area. Interestingly, when x = 0.35, the second relaxation energy values of NaxLa(2−x)/3Cu3Ti4O12 were relatively small and even much smaller than the first relaxation activation energy values, and the first relaxation activation energy value and second relaxation activation energy value were less than 0.70 eV, which might be attributed to the same role of the first ionization of oxygen vacancies, which were different from other ceramics. From the above the results of research, on the premise of charge balance, with change of Na+ and La3+ content, different the microstructure and electrical behavior of NaxLa(2−x)/3Cu3Ti4O12 ceramics might be due to the different defect structure.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (No. 21703157), the Science Foundation of Shaanxi Province (No. 2017JM2037), the Scientific Research Funds of Education Department (17JK0277) and the Scientific Research Funds of Weinan Normal University (No. 17YKF03).

References

  1. 1.
    H. Han, C. Voisin, S. Guillemet-Fritsch, P. Dufour, J. Appl. Phys. 113, 024102 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Han, C. Davis, J.C. Nino, J. Phys. Chem. C 118, 9137 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Maensiri, P. Thongbai, T. Yamwong, Acta Mater. 55, 2851 (2007)CrossRefGoogle Scholar
  5. 5.
    Z.J. Wang, M.H. Cao, Z.H. Yao, Q. Zhang, J. Eur. Ceram. Soc. 34, 1755 (2014)CrossRefGoogle Scholar
  6. 6.
    Z. Wang, M. Cao, Q. Zhang, J. Am. Ceram. Soc. 98, 476 (2015)CrossRefGoogle Scholar
  7. 7.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State. Chem. 151, 323 (2000)CrossRefGoogle Scholar
  8. 8.
    P.B. Shri, K.B.R. Varma, Physica B 403, 2246 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Chao, V. Petrovsky, F. Dogan, J. Mater. Sci. 45, 6685 (2010)CrossRefGoogle Scholar
  10. 10.
    Z.W. Li, J.G. Wu, W.J. Wu, J. Mater. Chem. C 3, 9206 (2015)CrossRefGoogle Scholar
  11. 11.
    X.J. Cheng, Z.W. Li, J.G. Wu, J. Mater. Chem. A 3, 5805 (2015)CrossRefGoogle Scholar
  12. 12.
    Z.W. Li, J.G. Wu, D.Q. Xiao, J.G. Zhu, Acta. Mater. 103, 243 (2016)CrossRefGoogle Scholar
  13. 13.
    P.F. Liang, Z.P. Yang, X.L. Chao, Z.H. Liu, J. Am. Ceram. Soc. 95, 2218 (2012)CrossRefGoogle Scholar
  14. 14.
    H.M. Ren, P.P. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)CrossRefGoogle Scholar
  15. 15.
    P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 432 (2012)CrossRefGoogle Scholar
  16. 16.
    Z.W. Li, X. Luo, W.J. Wu, J.G. Wu, J. Am. Ceram. Soc. 100, 3004 (2017)CrossRefGoogle Scholar
  17. 17.
    C.L. Zhao, J.G. Wu, ACS Appl. Mater. Interfaces 10, 3680 (2018)CrossRefGoogle Scholar
  18. 18.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  19. 19.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)CrossRefGoogle Scholar
  20. 20.
    J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, Chem. Mater. 16, 5223 (2004)CrossRefGoogle Scholar
  21. 21.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)CrossRefGoogle Scholar
  22. 22.
    Z.Q. Liu, X.L. Chao, Z.P. Yang, J. Mater. Sci.: Mater. Electron. 25, 2096 (2014)Google Scholar
  23. 23.
    Z.Q. Liu, Z.P. Yang, J. Mater. Sci.: Mater. Electron. 46, 6175 (2017)Google Scholar
  24. 24.
    Z.P. Yang, L.J. Zhang, X.L. Chao, L.R. Xiong, J. Liu, J. Alloys Compd. 509, 8716 (2001)CrossRefGoogle Scholar
  25. 25.
    Z. Yang, Y. Zhang, Z.H. Lu, K. Zhang, R. Xiong, J. Shi, J. Am. Ceram. Soc. 96, 806 (2013)CrossRefGoogle Scholar
  26. 26.
    D.L. Sun, A.Y. Wu, S.T. Yin, J. Am. Ceram. Soc. 91, 169 (2008)CrossRefGoogle Scholar
  27. 27.
    Z.Q. Liu, X.L. Chao, Z.P. Yang, J. Am. Ceram. Soc. 97, 2154 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Xu, J. Zhang, Z.M. Tian, Mater. Lett. 75, 87 (2012)CrossRefGoogle Scholar
  29. 29.
    P.F. Liang, Z.L. Liu, Z.P. Yang, J. Am. Ceram. Soc. 96, 3883 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Hong, D.Y. Kjm, J. Am. Ceram. Soc. 90, 2118 (2007)CrossRefGoogle Scholar
  31. 31.
    L. Zhang, J. Tang, Phys. Rev. B 70, 174306 (2004)CrossRefGoogle Scholar
  32. 32.
    J. Li, M.A. Su, H.D. Rosenfeld, Chem. Mater. 16, 5223 (2004)CrossRefGoogle Scholar
  33. 33.
    J.R. Li, K.H. Cho, N.J. Wu, IEEE Trans. Dielectr. Electr. Insul. 11, 534 (2004)Google Scholar
  34. 34.
    M.A. Siddiqui, V.S. Chandel, A. Azam, Appl. Surf. Sci. 258, 7354 (2012)CrossRefGoogle Scholar
  35. 35.
    L.N. Liu, C.C. Wang, C.M. Lei, Appl. Phys. Lett. 102, 112907 (2013)CrossRefGoogle Scholar
  36. 36.
    J.J. Liu, C.G. Duan, W.G. Yin, Phys. Rev. B 70, 2806 (2004)Google Scholar
  37. 37.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)CrossRefGoogle Scholar
  38. 38.
    H. Lin, J.N. Cai, M. Li, J. Appl. Phys. 103, 074111 (2008)CrossRefGoogle Scholar
  39. 39.
    J.G. Hou, R. Vawash, Y.F. Qu, Mater. Chem. Phys. 12, 32 (2010)CrossRefGoogle Scholar
  40. 40.
    J.G. Wu, J. Wang, J. Am. Ceram. Soc. 93, 2795 (2010)CrossRefGoogle Scholar
  41. 41.
    J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, J. Appl. Phys. 110, 064104 (2011)CrossRefGoogle Scholar
  42. 42.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, Mater. Chem. Phys. 97, 425 (2006)CrossRefGoogle Scholar
  43. 43.
    J.G. Wu, J. Wang, J. Appl. Phys. 105, 124107 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shaanxi Province Engineering Research Center of Coal Conversion Alcohol, College of Chemistry and MaterialsWeinan Normal UniversityWeinanPeople’s Republic of China
  2. 2.Key Laboratory of Macromolecular Science of Shaanxi Province, School of Materials Science and EngineeringShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations