3D nanocomposite archiecture constructed by reduced graphene oxide, thermally-treated protein and mesoporous NaTi2(PO4)3 nanocrystals as free-standing electrodes for advanced sodium ion battery

  • Liang Xu
  • Guobao Xu
  • Zhuo Chen
  • Xiaolin Wei
  • Juexian Cao
  • Liwen Yang
Article
  • 65 Downloads

Abstract

NaTi2(PO4)3 (NTP) with NASICON structure has been regarded as a promising material for sodium-ion batteries (SIBs). However, NTP always exhibits poor cycling stability and rate performance due to slow electronic conductivity. In this work, a free-standing 3D nanocomposite constructed by reduced graphene oxide (rGO), thermally-treated protein (TP) and mesoporous NaTi2(PO4)3 nanocrystals (denoted as MNTP-TP@rGO) is reported. The fabrication includes an electrostatic self-assembly, freeze-drying, mechanical pressing and thermal treatment. In the MNTP-TP@rGO nanocomposite, 3D interconnected carbon network of rGO and TP acts as both a support for the anchored well-distributed MNTP nanocrystals and a current collector. When free-standing MNTP-TP@rGO is used directly as anode in coin-type half-cell, it delivers a high-rate capacity (52.8 mAhg−1 at 50C) and robust cycling stability with the capacity retention of 80% after 1000 cycles at 5C. Furthermore, a full Na-ion battery is constructed using Na3V2(PO4)3/C (NVP/C) as a cathode and free-standing MNTP-TP@rGO as an anode and it exhibits a high specific capacity (58 mAhg−1 at 1C) and outstanding cycling stability (98% capacity retention over 100 cycles at 1C). Our results suggest great potential of the free-standing electrode of MNTP-TP@rGO composite in high-performance SIBs.

Notes

Acknowledgements

This work was financially supported by the Grants from National Natural Science Foundation of China (Nos. 11474242, 51472209 and 11774298) and the Hunan Provincial Innovation Foundation for Graduate (No. CX2016B254).

References

  1. 1.
    J.-Y. Luo, W.-J. Cui, P. He, Y.-Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010)CrossRefGoogle Scholar
  2. 2.
    X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26 4763–4782 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27, 5343–5364 (2015)CrossRefGoogle Scholar
  4. 4.
    C.-X. Zu, H. Li, Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011)CrossRefGoogle Scholar
  5. 5.
    C.M. Burba, R. Frech, Vibrational spectroscopic study of lithium intercalation into LiTi2(PO4)3. Solid State Ionics 177, 1489–1494 (2006)CrossRefGoogle Scholar
  6. 6.
    W. Shen, C. Wang, Q. Xu, H. Liu, Y. Wang, Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Adv. Energy Mater. 5, 1400982 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, L. Zhang, Y. Wu, Y. Zhong, Y. Hu, X.W.D. Lou, Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage. Chem. Commun. 51, 6921–6924 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Xu, M. Zhou, X. Wang, C. Wang, L. Liang, F. Grote, M. Wu, Y. Mi, Y. Lei, Enhancement of sodium ion battery performance enabled by oxygen vacancies. Angew. Chem. Int. Ed. 54, 8768–8771 (2015)CrossRefGoogle Scholar
  10. 10.
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Chen, G. Zou, H. Hou, Y. Zhang, Z. Huang, X. Ji, Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage. J. Mater. Chem. A 4, 12591–12601 (2016)CrossRefGoogle Scholar
  12. 12.
    G. Xu, L. Yang, X. Wei, J. Ding, J. Zhong, P. Chu, Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J. Power Sources 295, 305–313 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 5, 9254 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012)CrossRefGoogle Scholar
  15. 15.
    K. Kuratani, M. Yao, H. Senoh, N. Takeichi, T. Sakai, T. Kiyobayashi, Na-ion capacitor using sodium pre-doped hard carbon and activated carbon. Electrochim. Acta 76, 320–325 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Stevens, J. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000)CrossRefGoogle Scholar
  17. 17.
    Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-Temperature sodium-Ion batteries. Adv. Energy Mater. 3, 156–160 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.H. Jung, C.H. Lim, D.K. Kim, Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J. Mater. Chem. A 1, 11350–11354 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Wu, Y. Cao, X. Ai, J. Qian, H. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiF(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Li, D. Young, K. Xiang, W.C. Carter, Y.-M. Chiang, Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett. 14, 3539–3543 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, Y. Huang, H. Yang, 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 6, 1502197 (2016)CrossRefGoogle Scholar
  23. 23.
    S.I. Park, I. Gocheva, S. Okada, J. Yamaki, Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067–A1070 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 7929 (2015)CrossRefGoogle Scholar
  25. 25.
    G. Pang, C. Yuan, P. Nie, B. Ding, J. Zhu, X. Zhang, Synthesis of NASICON-type structured NaTi2(PO4)3–graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6, 6328–6334 (2014)CrossRefGoogle Scholar
  26. 26.
    B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite–a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Su, S. Dou, G. Wang, WS2@ graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 50, 4192–4195 (2014)CrossRefGoogle Scholar
  28. 28.
    G. Xu, L. Yang, X. Wei, J. Ding, J. Zhong, P. Chu, Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes. J. Power Sources 327, 580–590 (2016)CrossRefGoogle Scholar
  29. 29.
    Q. An, F. Xiong, Q. Wei, J. Sheng, L. He, D. Ma, Y. Yao, L. Mai, Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C microflowers: superior li storage performance and insertion/extraction mechanism. Adv. Energy Mater. 5, 1401963 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Xu, L. Yang, Z. Li, X. Wei, P.K. Chu, Protein-assisted assembly of mesoporous nanocrystals and carbon nanotubes for self-supporting high-performance sodium electrodes. J. Mater. Chem. A 5, 2749–2758 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Wu, A. Mohamed, J. Whitacre, Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160, A497–A504 (2013)CrossRefGoogle Scholar
  32. 32.
    H.-K. Roh, H.-K. Kim, M.-S. Kim, D.-H. Kim, K.Y. Chung, K.C. Roh, K.-B. Kim, In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 9, 1844–1855 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, H. Li, C. Zhang, Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries. J. Mater. Chem. A 2, 20659–20666 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Yang, H. Song, M. Wu, C. Wang, Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life. J. Mater. Chem. A 3, 18718–18726 (2015)CrossRefGoogle Scholar
  35. 35.
    C. Wu, P. Kopold, Y.-L. Ding, P.A. van Aken, J. Maier, Y. Yu, Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9, 6610–6618 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Liang Xu
    • 1
  • Guobao Xu
    • 1
  • Zhuo Chen
    • 1
  • Xiaolin Wei
    • 1
  • Juexian Cao
    • 1
  • Liwen Yang
    • 1
  1. 1.Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and OptoelectronicsXiangtan UniversityHunanChina

Personalised recommendations