Skip to main content
Log in

Optical investigations and optical constant of nano lithium niobate deposited by spray pyrolysis technique with injection of Li2CO3 and Nb2O5 as raw materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper explored physical properties of LiNbO3 thin films that was deposited on quartz substrate employing spray pyrolysis technique. New raw materials were exploited as the precursor compounds. The films were annealed at different annealing temperatures, i.e. room temperature to 600 °C. The LiNbO3 are characterized and analyzed by the FESEM, AFM, X-ray diffraction and analyzed by UV–Visible and photoluminescence. The optical properties were analyzed by ultra violet- visible (UV–Visible) and photoluminescence measurements. The results indicated that the orientation of films crystallization and the grain size decreased with the increment of annealed temperatures. Energy band gap was recorded approximately 3.9 eV. The transmission efficiency was found to be in the range of 43–78%. Refractive index was observed from 2.02 to 2.43. Optical conductivity increased from 1.8 × 104 to 2.4 × 104 (s−1). The real and imaginary components of dielectric constants (εr, εi), and Urbach energy decreased with higher annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Meriche, E. Neiss-Clauss, R. Kremer, A. Boudrioua, E. Dogheche, E. Fogarassy, R. Mouras, A. Bouabellou, Micro structuring of LiNbO3 by using nanosecond pulsed laser ablation. Appl. Surf. Sci. 254, 1327–1331 (2007)

    Article  Google Scholar 

  2. P.S. Bullena, H.-C. Huangb, H. Yangb, J.I. Dadapb, I. Kymissisb, R.M. Osgood Jr., Microscopy and microRaman study of periodically poled domains in deeply thinned lithium niobate wafers. Opt. Mater. 57, 243 (2016)

    Article  Google Scholar 

  3. Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, E.T. Salim, Frequency-based detection of female aedes mosquito using surface acoustic wave technology: early prevention of dengue fever. Microelectron. Eng. 179, 83–90 (2017)

    Article  Google Scholar 

  4. V. Bornand, I. Huet, P. Papet, LiNbO3 thin films deposited on Si substrates: a morphological development study. Mater. Chem. Phys. 77, 571 (2003)

    Article  Google Scholar 

  5. Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, Simulation, fabrication and validation of surface acoustic wave layered sensor based on ZnO/IDT/128 YX LiNbO3. Int. J. Appl. Eng. Res. 11, 8785 (2016)

    Google Scholar 

  6. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysia of nanophotonic LiNbO3. ARPN J. Eng. Appl. Sci. 11, 4974 (2004)

    Google Scholar 

  7. M. Liu, D.A. Xue, A solvothermal route to crystalline lithium niobate. Mater. Lett. 59, 2908 (2005)

    Article  Google Scholar 

  8. D. Xue, K. Kitamura, Crystallographic modifications of physical properties of lithium niobate crystals by the cation location. J. Cryst. Growth 249, 507 (2003)

    Article  Google Scholar 

  9. A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. Bernal, N. Courjal, Strong reduction of propagation losses in LiNbO3 ridge waveguides. Opt. Mater. 38, 37 (2016)

    Article  Google Scholar 

  10. S. Kato, S. Kurimura, H.H. Lim, N. Mio, Induced heating by nonlinear absorption in LiNbO3-type crystals under continuous-wave laser irradiation. Opt. Mater. 40, 10 (2015)

    Article  Google Scholar 

  11. K. Peithmann, M. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Bbuse, Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage. Appl. Phys. B 82, 419 (2006)

    Article  Google Scholar 

  12. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, U. Hashim, Z.T. Salim, R.A. Ismail, Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration. J. Mater. Sci.: Mater. Electron. 28, 11813 (2017)

    Google Scholar 

  13. M. Liu, D. Xue, K. Li, Soft-chemistry synthesis of LiNbO3 crystallites. J. Alloys Compd. 449, 28–31 (2008)

    Article  Google Scholar 

  14. X. Wang, Y. Liang, S. Tian, W. Man, J. Jia, Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application. J. Cryst. Growth 375, 73 (2013)

    Article  Google Scholar 

  15. C. An, K. Tang, C. Wang, G. Shen, Y. Jin, Y. Qian, Characterization of LiNbO3 nanocrystals prepared via a convenient hydrothermal route. Mater. Res. Bull. 37, 1791–1796 (2002)

    Article  Google Scholar 

  16. H. Akazaw, M. Shimad, Control of crystallographic orientation of LiNbO3 films grown by electron–cyclotron resonance plasma sputtering on TiN films. Vacuum 80, 704 (2006)

    Article  Google Scholar 

  17. V. Bornand, I. Huet, P. Papet, LiNbO3 thin films deposited on Si substrates: a morphological development study. Mater. Chem. Phys. 77, 571 (2002)

    Article  Google Scholar 

  18. A.R. Kamali, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835 (2014)

    Article  Google Scholar 

  19. M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, Preparation and charactrization of photonic LiNbO3 generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci.: Mater. Electron. 27, 13105–13112 (2016)

    Google Scholar 

  20. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, Annealing temperature effects on morphological and optical studies of nano and micro photonics lithium niobate using for optical waveguide applications. Aust. J. Basic Appl. Sci. 9, 128 (2015)

    Google Scholar 

  21. E.T. Salim, Optical and electrical properties of SnO2 thin film prepared using RTO method. Int. J. Mod. Phys. B 25, 1081 (2011)

    Article  Google Scholar 

  22. V.I. Sokolov, N.V. Marusin, V.Y. Panchenko, A.G. Savelyev, V. Seminogov, E. Khaydukov, Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation. Quantum Electron. 43(12), 1149–1153 (2013)

    Article  Google Scholar 

  23. M.A. Fakhri, E.T. Salim, U. Hashim, A.W. Abdulwahhab, Z.T. Salim, Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3. J. Mater. Sci.: Mater. Electron. 28, 16728 (2017)

    Google Scholar 

  24. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 255, 4491 (2009)

    Article  Google Scholar 

  25. E.T. Salem, M.A. Fakhry, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic device fabrication. Int. J. Nanoelectron. Mater. 6, 121 (2013)

    Google Scholar 

  26. A.S. Hassanien, A.A. Alaa, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50–xSex thin films. J. Alloys Compd. 648, 280 (2015)

    Article  Google Scholar 

  27. A.S. Hassanien, A.A. Alaa, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153 (2016)

    Article  Google Scholar 

  28. I.-S. Bae, S.-J. Cho, Electrical mechanical and optical properties of the organic–inorganic hybrid-polymer thin films deposited by PECVD. Thin Solid Films 516, 3577–3581 (2008)

    Article  Google Scholar 

  29. P. Li-Ping, F. Liang, W. Wei-Dong, W. Xue-Min, L. Li, The effects of post-thermal annealing on the optical parameters of indium-doped ZnO thin films. Chin. Phys. B 21, 047305–047309 (2012)

    Article  Google Scholar 

  30. S. Shandilya, A. Sharma, M. Tomar, V. Gupta, Optical properties of the c-axis oriented LiNbO3 thin film. Thin Solid Films 520, 2142 (2012)

    Article  Google Scholar 

  31. K.C. Lalithambika, K. Shanthakumari, S. Sriram, Optical properties of CdO thin films deposited by chemical bath method. Int. J. ChemTech Res. 6(5), 3071–3077 (2014)

    Google Scholar 

  32. M.D. Femi, A. Ohwofosirai, A. Sunday, O.S.B.A.E.F.I. Ezema, R.U. Osuji, Variation of the optical conductivity, dielectric function and the energy bandgap of CdO using cadmium acetate dehydrate. Int. J. Adv. Electr. Electron. Eng. 2, 331 (2014)

    Google Scholar 

  33. P. Li-Ping, F. Liang, W. Wei-Dong, W. Xue-Min, L. Li, The effects of post-thermal annealing on the optical parameters of indium-doped ZnO thin films. Chin. Phys. B 21, 047305-1–047305-5 (2012)

    Google Scholar 

  34. N.S.L.S. Vasconcelos, J.S. Vasconcelos, V. Bouquet, S.M. Zanetti, E.R. Leite, E. Longo, L.E.B. Soledade, F.M. Pontes, M. Guilloux-Viry, A. Perrin, M.I. Bernardi, J.A. Varela, Epitaxial growth of LiNbO thin films in a microwave oven. Thin Solid Films 436, 213 (2003)

    Article  Google Scholar 

  35. D.E. Zelmon, D.L. Small, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3323 (1997)

    Article  Google Scholar 

  36. D. Ciplys, R. Rimeika, I. Suarez, G. Lifante, M.S. Shur, A. Aulas, Guided-wave acousto-optic diffraction in Zn:LiNbO3. Elelctron. Lett. 42, 1294 (2006)

    Article  Google Scholar 

  37. T. Ghosh, B. Samanta, P.C. Jana, P. Ganguly, Comparison of calculated and measured refractive index profiles of continuous wave ultravoilet written waveguides in LiNbO3 and its analysis by effective index based matrix method. J. Appl. Phys. 117, 053106 (2015)

    Article  Google Scholar 

  38. J. Zhang, X. Zhang, Biomolecular binding dynamics in sensors based on metallic photonic crystals. Opt. Commun. 320, 56 (2014)

    Article  Google Scholar 

  39. E.K. Abdel-Khalek, A.A. Bahgat, Optical and dielectric properties of transparent glasses and nanocrystals of lithium niobate and lithium diborate in borate glasses. Phys. B 405, 1986 (2010)

    Article  Google Scholar 

  40. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, XRD analysis and morphological studies of spin coated LiNbO3 nano photonic crystal prepared for optical waveguide application. Adv. Mater. Res. 1133, 457 (2016)

    Article  Google Scholar 

  41. S.M. Young, F. Zheng, A.M. Rappe, First-principles materials design of high-performing bulk photovoltaics with the LiNbO3 structure. Phys. Rev. Appl. 4, 054004 (2015)

    Article  Google Scholar 

  42. C. Thierfelder, S. Sanna, A. Schindlmayr, W.G. Schmidt, Do we know the band gap of lithium niobate? Phys. Status Solidi C 7, 362 (2010)

    Article  Google Scholar 

  43. I.-K. Jeong, S. Park, Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a rietveld analysis. J. Korean Phys. Soc. 59, 2756–2759 (2011)

    Article  Google Scholar 

  44. S. Hwang, J. Lee, C. Jeongb, Y. Jooa, Effect of film thickness and annealing temperature on hillock distributions in pure Al films. Scripta Mater. 56, 17 (2007)

    Article  Google Scholar 

  45. M.H. Zhao, D.A. Bonnell, J.M. Vohs, Ferroelectric polarization dependent interactions at Pd–LiNbO3(0001)Pd–LiNbO3(0001)interfaces. J. Vac. Sci. Technol. A 27, 1337 (2009)

    Article  Google Scholar 

  46. A.Z. Simoesa, M.A. Zaghete, B.D. Stojanovic, A.H. Gonzalez, C.S. Riccardi, M. Cantoni, J.A. Varela, Influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films. J. Eur. Ceram. Soc. 24, 1607–1613 (2004)

    Article  Google Scholar 

  47. P. Kumar, S.M. Babu, S. Perero, R.L. Sai, I. Bhaumik, S. Ganesamoorthy, A.K. Karnal, X-ray photoelectron spectroscopy, high-resolution X-ray di®raction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal. Pramana 75 1035–1040 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Makram A. Fakhri or Evan T. Salim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, M.A., Salim, E.T., Wahid, M.H.A. et al. Optical investigations and optical constant of nano lithium niobate deposited by spray pyrolysis technique with injection of Li2CO3 and Nb2O5 as raw materials. J Mater Sci: Mater Electron 29, 9200–9208 (2018). https://doi.org/10.1007/s10854-018-8948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8948-9

Navigation