Advertisement

One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method

  • Xiangxin Xue
  • Lei Chen
  • Cuimei Zhao
  • Limin Chang
Article
  • 149 Downloads

Abstract

In this paper, microwave-assisted method was used for rapid synthesis of highly luminescent Mn-doped ZnSe/ZnS core/shell nanocrystals in aqueous phase. A series of nanocrystals with different size was prepared in 1 h under proper condition. The as-prepared Mn-doped ZnSe/ZnS QDs exhibit the emission in the range of 565–602 nm and the highest photoluminescence quantum yield reached up to 36.3% under the optimal reaction condition. The optical properties and structure of the Mn:ZnSe/ZnS QDs have been characterized by PL spectroscopy, UV–Vis, TEM, XRD and XPS. The effects of various experimental variables, including the reaction pressure, the pH value of reaction solution, the ratio of Zn to ligand (MPA), and the post-treatment on the optical properties of the Mn:ZnSe/ZnS QDs were investigated systematically. The as-prepared MPA coated Mn-doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions in water, the result shows that the QD-based metal ions sensor possesses high sensitivity and selectivity, and could be applied for the quantification analysis of Hg2+ ions in water.

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation (Grant Nos. 21505049) of P. R. China; the Development Program of Science and Technology of Jilin Province (20170520134JH); the Scientific Foundation for Young Scientists of Jilin Normal University (2014005 and 2014007).

Supplementary material

10854_2018_8946_MOESM1_ESM.docx (437 kb)
Supplementary material 1 (DOCX 436 KB)

References

  1. 1.
    B.J. Marcel, M. Mario, G. Peter, W. Shimon, A.P. Alivisatos, Science 281, 2013 (1998)CrossRefGoogle Scholar
  2. 2.
    W.C.W. Chan, S.M. Nie, Science 281, 2016 (1998)CrossRefGoogle Scholar
  3. 3.
    M. Han, X. Gao, J.Z. Su, S.M. Nie, Nat. Biotechnol. 19, 631 (2001)CrossRefGoogle Scholar
  4. 4.
    I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Weng, J. Ren, Curr. Med. Chem. 13, 897 (2006)CrossRefGoogle Scholar
  6. 6.
    Q.J. Sun, Y.A. Wang, L.S. Li, D.Y. Wang, T. Zhu, J. Xu, C.H. Yang, Y.F. Li, Nat. Photonics 1, 717 (2007)CrossRefGoogle Scholar
  7. 7.
    N. Pradhan, X. Peng, J. Am. Chem. Soc. 129, 3339 (2007)CrossRefGoogle Scholar
  8. 8.
    H.Z. Wang, H. Nakamura, M. Uehara, Y. Yamaguchi, M. Miyazaki, H. Maeda, Adv. Funct. Mater. 15, 603 (2005)CrossRefGoogle Scholar
  9. 9.
    H.Z. Wang, H.Y. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu, H. Maeda, Chem. Commun. 1, 48 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Green, E. Howman, Chem. Commun. 7, 121 (2005)CrossRefGoogle Scholar
  11. 11.
    R. Bakalova, Z. Zhelev, H. Ohba, Y. Baba, J. Am. Chem. Soc. 127, 9328 (2005)CrossRefGoogle Scholar
  12. 12.
    Y.C. Wang, B. Wu, C.B. Yang, M.X. Liu, T.C. Sum, K.T. Yong, Small 12, 534 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Heo, C.S. Hwang, Nanomaterials 6, 82 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Anilkumar, K.R. Bindu, A.S. Saj, E.I. Anila, Chinese Phys. B 25, 088103 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Kezuka, M. Konishi, T. Isobe, M. Senna, J. Lumin. 418, 87 (2000)Google Scholar
  16. 16.
    L. Cao, J. Zhang, S. Ren, S. Huang, Appl. Phys. Lett. 80, 4300 (2002)CrossRefGoogle Scholar
  17. 17.
    S. Ethiraj, N. Hebalkar, S.K. Kulkarni, R. Pasricha, J. Urban, C. Dem, M. Schmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Heske, E. Umbach, J. Chem. Phys. 118, 8945 (2003)CrossRefGoogle Scholar
  18. 18.
    N. Pradhan, D. Goorskey, J. Thessing, X. Peng, J. Am. Chem. Soc. 127, 17586 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Pradhan, D.M. Battaglia, Y. Liu, X. Peng, Nano Lett. 7, 312 (2007)CrossRefGoogle Scholar
  20. 20.
    D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G. Medjahdi, R. Schneider, Inorg. Chem. 49, 10940 (2010)CrossRefGoogle Scholar
  22. 22.
    B.H. Dong, L.X. Cao, G. Su, W. Liu, J. Phys. Chem. C 116, 12258 (2012)CrossRefGoogle Scholar
  23. 23.
    H.F. Qian, X. Qiu, L. Liang, J.C. Ren, J. Phys. Chem. B 110, 9034 (2006)CrossRefGoogle Scholar
  24. 24.
    M.A. Correa-Duarte, M. Giersig, N.A. Kotov, L.M. Liz-Marzan, Langmuir 14, 6430 (1998)CrossRefGoogle Scholar
  25. 25.
    L. Li, H.F. Qian, J.C. Ren, Chem. Commun. 36, 528 (2005)CrossRefGoogle Scholar
  26. 26.
    D.M. Han, C.F. Song, X.Y. Li, Spectrosc Spect Anal. 30, 2331 (2010)Google Scholar
  27. 27.
    L.W. Jiang, J. Zhou, X.Z. Yang, X.N. Peng, H. Jiang, D.Q. Zhuo, L.D. Chen, X.F. Yu, Chem. Phys. Lett. 510, 135 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Zhang, Q.H. Chen, W.L. Zhang, S.L. Mei, L.J. He, J.T. Zhu, G.P. Chen, R.Q. Guo, Appl. Surf. Sci. 351, 655 (2015)CrossRefGoogle Scholar
  29. 29.
    J.Q. Zhuang, X.D. Zhang, G. Wang, D.M. Li, W.S. Yang, T.J. Li, J. Mater. Chem. 13, 1853 (2003)CrossRefGoogle Scholar
  30. 30.
    P.T. Shao, Q.H. Zhang, Y.G. Li, H.Z. Wang, J. Mater. Chem. 21, 151 (2011)CrossRefGoogle Scholar
  31. 31.
    J.S. Wang, H.E. Smith, G.J. Brown, Mater. Chem. Phys. 154, 44 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Massey, M. Wu, E.M. Conroy, W.R. Algar, Curr. Opin. Biotech. 34, 30 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. Kim, C. Ippen, T. Greco, I. Jang, S. Park, M.S. Oh, C.J. Han, J. Lee, A. Wedel, J. Kim, Electron. Mater. Lett. 10, 479 (2014)CrossRefGoogle Scholar
  34. 34.
    T.G. Kryshtab, L.V. Borkovska, O.F. Kolomys, N.O. Korsunska, V.V. Strelchuk, L.P. Germash, K.Y. Pechers’ka, G. Chornokur, S.S. Ostapenko, C.M. Phelan, O.L. Stroyuk, Superlattice. Microst. 51, 353 (2012)CrossRefGoogle Scholar
  35. 35.
    W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)CrossRefGoogle Scholar
  36. 36.
    B.A. Du, C. Liu, Y.H. Cao, L.N. Chen, Spectrosc. Spect. Anal. 34, 1070 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)Ministry of EducationChangchunChina

Personalised recommendations