Advertisement

Synthesis and characterization of borosilicate glass/β-spodumene/Al2O3 composites with low CTE value for LTCC applications

  • Fenglin Wang
  • Xingyu Chen
  • Weijun Zhang
  • Haijun Mao
Article

Abstract

Glass + ceramic composites based on low-softening-point borosilicate (BS) glass, β-spodumene and Al2O3 were produced in this work. The influence of ceramic filler composition on the microstructure, sintering quality, mechanical properties, thermal properties and dielectric properties of composites were studied. XRD and DSC indicated that both kinds of ceramic filler as well as the BS glass maintained their characteristics after sintering. The addition of β-spodumene would decrease the coefficient of thermal expansion (CTE) value of composites to match with silicon well. The better wetting behavior between β-spodumene and BS glass would lead to better sintering quality, microstructure and dielectric properties for composites containing more β-spodumene. With appropriate Al2O3 content, the flexural strength of composites could be enhanced. Composite with 45 wt% BS glass, 30 wt% β-spodumene and 25 wt% Al2O3 sintered at 875 °C showed good properties which meet the requirements of low temperature co-fired ceramic applications: dense microstructure with high relative density of 96.27%, proper CTE value of 3.57 ppm/°C, high flexural strength of 156 MPa, low dielectric constant of 6.20 and low dielectric loss of 1.9 × 10−3.

Notes

Acknowledgements

This work is partly supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3602).

References

  1. 1.
    X. Chen, W. Zhang, S. Bai, Y. Du, Densification and characterization of SiO2-B2O3-CaO-MgO glass/Al2O3 composites for LTCC application. Ceram. Int. 39(6), 8207–8212 (2013)Google Scholar
  2. 2.
    A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, H. Barzegar-Bafrooei, Low temperature cofirable Li2Zn3Ti4O12 microwave dielectric ceramic with Li2O-ZnO-B2O3 glass additive. J. Mater. Sci.-Mater. Electron. 25(1), 355–360 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Manu, M.T. Sebastian, Tape casting of low permittivity Wesselsite-Glass composite for LTCC based microwave applications. Ceram. Int. 42(1), 1210–1216 (2016)CrossRefGoogle Scholar
  4. 4.
    R.R. Tummala, Ceramic and glass-ceramic packaging in the 1990s. J. Am. Ceram. Soc. 74(5), 895–908 (1991)CrossRefGoogle Scholar
  5. 5.
    M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)CrossRefGoogle Scholar
  6. 6.
    C.J. Dileep Kumar, T.K. Sowmya, E.K. Sunny, N. Raghu, N. Venkataramani, A.R. Kulkarni, Influence of nature of filler on densification of anorthite-based crystallizable glass + ceramic system for low temperature cofired ceramics application. J. Am. Ceram. Soc. 92(3), 595–600 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Ledbetter, S. Kim, D. Balzar, S. Crudele, W. Kriven, Elastic properties of mullite. J. Am. Ceram. Soc. 81(4), 1025–1028 (1998)CrossRefGoogle Scholar
  8. 8.
    Y. Yu, X. Hao, L. Song, Z. Li, L. Song, Synthesis and characterization of single phase and low temperature co-fired cordierite glass-ceramics from perlite. J. Non-Cryst. Solids 448, 36–42 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Song, Z. Li, G. Li, Y. Li, S. Jiang, Y. Huang, Y. Shen, Fabrication, sintering and characterization of cordierite glass-ceramics for low temperature co-fired ceramic substrates from kaolin. J. Mater. Sci.-Mater. Electron. 27(8), 8504–8511 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Kuscer, I. Bantan, M. Hrovat, B. Malic, The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J. Eur. Ceram. Soc. 37(2), 739–746 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Wu, Z. Li, Y. Huang, F. Li, Q. Yang, Fabrication and characterization of low temperature co-fired cordierite glass-ceramics from potassium feldspar. J. Alloys Compd. 583, 248–253 (2014)CrossRefGoogle Scholar
  12. 12.
    J.H. Jean, C.R. Chang, Characterization of a low k silica glass composite. J. Mater. Sci. Lett. 14(19), 1360–1361 (1995)CrossRefGoogle Scholar
  13. 13.
    J.H. Jean, T.K. Gupta, Design of low dielectric glass + ceramics for multilayer ceramic substrate. IEEE Trans. Compon. Packag. Manuf. Technol. B 17(2), 228–233 (1994)CrossRefGoogle Scholar
  14. 14.
    H. Anmin, L. Ming, M. Dali, Phase transformation in spodumene-diopside glass. J. Therm. Anal. Calorim. 84(2), 497–501 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Arcaro, M.I. Nieto, R. Moreno, A.P. Novaesde Oliveira, The influence of nano alumina additions on the coefficient of thermal expansion of a LZS glass-ceramic composition. Ceram. Int. 42(7), 8620–8626 (2016)CrossRefGoogle Scholar
  16. 16.
    R.D. Shannon, J.E. Dickinson, G.R. Rossman, Dielectric constants of crystalline and amorphous spodumene, anorthite and diopside and the oxide additivity rule. Phys. Chem. Miner. 19(3), 148–156 (1992)Google Scholar
  17. 17.
    B. Li, Z. Qing, Y. Li, H. Li, S. Zhang, Effect of CaO content on structure and properties of low temperature co-fired glass-ceramic in the Li2O-Al2O3-SiO2 system. J. Mater. Sci.-Mater. Electron. 27(3), 2455–2459 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Qing, B. Li, H. Li, Y. Li, S. Zhang, Effects of MgO on properties of Li2O-Al2O3-SiO2 glass-ceramics for LTCC applications. J. Mater. Sci.-Mater. Electron. 25(5), 2149–2154 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Qing, B. Li, Y. Li, H. Li, S. Zhang, Microstructure and properties of ZnO doped Li2O-Al2O3-SiO2 glass-ceramic for LTCC applications. J. Mater. Sci.-Mater. Electron. 27(2), 1597–1601 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Li, D. Duan, Q. Long, Influences of ZrO2 on microstructures and properties of Li2O-Al2O3-SiO2 glass-ceramics for LTCC applications. J. Mater. Sci.-Mater. Electron. 27(1), 134–139 (2016)CrossRefGoogle Scholar
  21. 21.
    B. Li, D. Duan, Q. Long, Effects of TiO2 on microstructures and properties of Li2O-Al2O3-SiO2 glass-ceramics for LTCC substrates. J. Mater. Sci.-Mater. Electron. 27(7), 7240–7245 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Li, S. Wang, Y. Fang, Effect of Cr2O3 addition on crystallization, microstructure and properties of Li2O-Al2O3-SiO2 glass-ceramics. J. Alloys Compd. 693, 9–15 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Chen, L. Tang, J. Cheng, M. Jiang, Synthesis and characterization of CBS glass/ceramic composites for LTCC application. J. Alloys Compd. 478(1–2), 858–862 (2009)CrossRefGoogle Scholar
  24. 24.
    X. Luo, L. Ren, W. Xie, L. Qian, Y. Wang, Q. Sun, H. Zhou, Microstructure, sintering and properties of CaO-Al2O3-B2O3-SiO2 glass/Al2O3 composites with different CaO contents. J. Mater. Sci.-Mater. Electron. 27(5), 5446–5451 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Ohasto, T. Tsunooka, M. Ando, Y. Ohishi, Y. Miyaochi, K. Kakimoto, Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant. J. Korean Ceram. Soc. 40(4), 350–353 (2003)CrossRefGoogle Scholar
  26. 26.
    G. Chen, X. Liu, Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics containing ZnO. J. Alloys Compd. 431(1–2), 282–286 (2007)CrossRefGoogle Scholar
  27. 27.
    G. Chen, X. Liu, Fabrication, characterization and sintering of glass-ceramics for low-temperature co-fired ceramic substrates. J. Mater. Sci.-Mater. Electron. 15(9), 595–600 (2004)CrossRefGoogle Scholar
  28. 28.
    T. Ogiwara, Y. Noda, O. Kimura, Low-temperature sintering of β-spodumene ceramics using Li2O-GeO2 as a sintering additive. J. Am. Ceram. Soc. 96(8), 2577–2582 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Roy, D.M. Roy, E.F. Osborn, Compositional and stability relationships among the lithium aluminosilicates: eucryptite, spodumene, and petalite. J. Am. Ceram. Soc. 33(5), 152–159 (1950)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations