Skip to main content
Log in

Electrical, optical, and topographical properties of RF magnetron sputtered aluminum-doped zinc oxide (AZO) thin films complemented by first-principles calculations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fabrication of an efficient electron transport layer (ETL) with high conductivity and transparency is of significant interest. Aluminum doped zinc oxide (AZO) is an established ETL candidate due to its excellent conductivity and transparency, especially in the visible–near infrared (Vis–NIR) spectral range. Herein, we attempt to understand AZO properties by both experimental and computational approaches, as far as these methodologies permit. As part of our approach, we have deposited AZO thin films using radio frequency sputtering technique under two different sets of conditions, batch-I (150, 175, and 200 W; 0.2 mTorr; 20 min) and batch-II (70 W; 2 mTorr; 75 min). And, we have studied the structural, morphological, topographical, electrical, and optical properties of thus deposited films. The results are complemented by first-principles calculations based on the density functional theory (DFT) performed over a 2 × 2 × 2 and 3 × 2 × 2 supercell of wurtzite ZnO, to assess the effect of one aluminum atom substitution on the structural, electronic, and optical properties of the solid. We could discuss, thus, obtained computational results by comparing with the experimental measurements through a reliable construction of aluminum doping percentage models (3.12 and 2.08 at.%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Schmidt, A. Falco, M. Loch, P. Lugli, G. Scarpa, AIP Adv. (2014). https://doi.org/10.1063/1.4899044

    Google Scholar 

  2. M. Souadaa, C. Louagea, J.Y. Doisya, L. Meuniera, A. Benderraga, B. Ouddaneb, S. Bellayera, N. Nunsc, M. Traisnela, U. Maschke, Ultrason. Sonochem. (2018). https://doi.org/10.1016/j.ultsonch.2017.08.043

    Google Scholar 

  3. C. ViolBarbosaa, J. Karela, J. Kissa, O.D. Gordanb, S.G. Altendorfc, Y. Utsumia, M.G. Samantc, Y.H. Wud, K.D. Tsueid, C. Felsera, S.S.P. Parkinc, Proc. Natl. Acad. Sci. USA (2016). https://doi.org/10.1073/pnas.1611745113

    Google Scholar 

  4. A. Karalis, J.D. Joannopoulos, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-13540-8

    Google Scholar 

  5. J. Ghosha, R. Ghosha, P.K. Giri, Sens. Actuators B (2018). https://doi.org/10.1016/j.snb.2017.07.110

    Google Scholar 

  6. B.T. Camic, F. Oytun, M.H. Aslan, H.J. Shin, H. Choi, F. Basarir, J Colloid Interface Sci. (2017). https://doi.org/10.1016/j.jcis.2017.05.065

    Google Scholar 

  7. S.Q. Hussain, C. Yen, S. Khan, G.D. Kwon, S. Kim, S. Ahn, A.H. Tuan Le, H. Park, S. Velumani, J. Yi, Mater. Sci. Semicond. Process. (2015). https://doi.org/10.1016/j.mssp.2015.02.024

    Google Scholar 

  8. S. Khan, S. Qamar Hussain, D. Hwang, S. Velumani, H. Lee, Mater. Sci. Semicond. Process. (2015). https://doi.org/10.1016/j.mssp.2015.01.019

    Google Scholar 

  9. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today (2007). https://doi.org/10.1016/S1369-7021(07)70078-0

    Google Scholar 

  10. H. Zhu, Y. Feng, L. Zhang, B. Lai, T. He, D. Liu, Y. Wang, J. Yin, Y. Ma, Y. Huang, H. Jia, Y. Mai, Phys. Status Solidi A (2012). https://doi.org/10.1002/pssa.201127746

    Google Scholar 

  11. R.R. Biswal, S. Velumani, B.J. Babu, A. Maldonado, S.T. Guerrac, L. Castaneda, M.D.L.L. Olvera, Mater. Sci. Eng. B (2010). https://doi.org/10.1016/j.mseb.2010.03.013

    Google Scholar 

  12. V. Bhosle, J.T. Prater, F. Yang, D. Burk, S.R. Forrest, J. Narayan, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2750410

    Google Scholar 

  13. C. Besleaga, L. Ion, V. Ghenescu, G. Soco, A. Radu, L. Arghir, C. Florica, S. Antohe, Thin Solid Films (2012). https://doi.org/10.1016/j.tsf.2012.07.030

    Google Scholar 

  14. B. Santoshkumar, A. Biswas, S. Kalyanaraman, R. Thangavel, G. Udayabhanu, G. Annadurai, S. Velumani, Superlattices Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.03.039

    Google Scholar 

  15. H. AitDads, S. Bouzit, L. Nkhaili, A. Elkissani, A. Outzourhit, Sol. Energy Mater. Sol. Cells (2016). https://doi.org/10.1016/j.solmat.2015.09.063

    Google Scholar 

  16. M.L. Grilli, A. Sytchkova, S. Boycheva, A. Piegari, Phys. Status Solidi A (2013). https://doi.org/10.1002/pssa.201200547

    Google Scholar 

  17. Y.B. Li, Y. Bando, D. Golberg, Appl. Phys. Lett. (2004). https://doi.org/10.1063/1.1738174

    Google Scholar 

  18. B. Yun Oh, M.C. Jeong, T.H. Moon, W. Lee, J.M. Myounga, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2206417

    Google Scholar 

  19. P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T.B. Tasciuc, S.X. Dou, G. Ramanath, Nano Lett. (2011). https://doi.org/10.1021/nl202439h

    Google Scholar 

  20. T.R. Ramireddy, V. Venugopal, J.B. Bellam, A. Maldonado, J. Vega-Pérez, S. Velumani, M.D.L.L. Olvera, Materials (2012). https://doi.org/10.3390/ma5081404

    Google Scholar 

  21. B.P. Zhang, K. Wakatsuki, N.T. Binh, N. Usami, Y. Segawa, Thin Solid Films (2004). https://doi.org/10.1016/S0040-6090(03)01466-4

    Google Scholar 

  22. A.N. Gruzintsev, V.T. Volkov, L.N. Matveeva, Russ. Microlectron. (2002). https://doi.org/10.1023/A:1015415120927

    Google Scholar 

  23. A.C. Gâlcă, M. Secu, A. Vlad, J.D. Pedarnig, Thin Solid Films (2010). https://doi.org/10.1016/j.tsf.2009.12.041

    Google Scholar 

  24. N. Srinatha, Y.S. No, V.B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A.M. Umarjif, W.K. Choib, RSC Adv. (2016). https://doi.org/10.1039/c5ra22795j

    Google Scholar 

  25. T. Schuler, T. Krajewski, I. Grobelsek, M.A. Aegerter, Thin Solid Films (2006). https://doi.org/10.1016/j.tsf.2005.07.246

    Google Scholar 

  26. B.J. Babu, A. Maldonado, S. Velumani, R. Asomoza, Mater. Sci. Eng. B (2010). https://doi.org/10.1016/j.mseb.2010.03.010

    Google Scholar 

  27. P. Raghu, N. Srinatha, C.S. Naveen, H.M. Mahesh, B. Angadi, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.09.290

    Google Scholar 

  28. B. Yun Oh, M.C. Jeong, W. Lee, J.M. Myoung, J. Cryst. Growth (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.026

    Google Scholar 

  29. Y. Wang, C. Wang, Z. Peng, Q. Wang, X. Fu, Surf. Rev. Lett. (2017). https://doi.org/10.1142/S0218625X18500063

    Google Scholar 

  30. J.V. Kumar, A. Maldonado, Y. Matsumato, M.L. Olvera, ICEEE (2014). https://doi.org/10.1109/ICEEE.2014.6978324

    Google Scholar 

  31. J.W. Kim, H.B. Kim, J. Korean Phys. Soc. (2011). https://doi.org/10.3938/jkps.59.2349

    Google Scholar 

  32. M. Bououdina, S. Azzaza, R. Ghomri, M.N. Shaikh, J.H. Dai, Y. Song, W. Song, W. Cai, M. Ghers, RSC Adv. (2017). https://doi.org/10.1039/c7ra01015j

    Google Scholar 

  33. P.K. Jain, M. Salim, Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa6f99

    Google Scholar 

  34. A. Abbassi, H. Ez-Zahraouy, A. Benyoussef, Opt. Quant. Electron. (2015). https://doi.org/10.1007/s11082-014-0052-7

    Google Scholar 

  35. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter (2002). https://doi.org/10.1088/0953-8984/14/11/301

    Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Google Scholar 

  37. B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, J. Comp. Phys. (1997). https://doi.org/10.1006/jcph.1996.5612

    Google Scholar 

  38. L. Zhifang, C. Guangyu, G. Shibin, D. Lingling, Y. Rong, M. Yuan, G. Ted, L. Liwei, J. Semicond. (2013). https://doi.org/10.1088/1674-4926/34/6/063004

    Google Scholar 

  39. D. Vanderbilt, Phys. Rev. B (1990). https://doi.org/10.1103/PhysRevB.41.7892

    Google Scholar 

  40. E. Nichelatti, J. Opt. A (2002). https://doi.org/10.1088/1464-4258/4/4/306

    Google Scholar 

  41. A.J. Read, R.J. Needs, Phys. Rev. B (1991) .https://doi.org/10.1103/PhysRevB.44.13071

    Google Scholar 

  42. T. Blanton, International Centre for Diffraction Data, Newtown Square (2014)

  43. J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho, J.M. Myoung, Solid State Electron. (2010). https://doi.org/10.1016/j.sse.2010.07.002

    Google Scholar 

  44. H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, D.B. Chrisey, Appl. Phys. Lett. (2000). https://doi.org/10.1063/1.125740

    Google Scholar 

  45. O. Szabó, S. Kováčová, V. Tvarožek, I. Novotný, P. Šutta, M. Netrvalová, D. Rossberg, P. Schaaf, Thin Solid Films (2015). https://doi.org/10.1016/j.tsf.2015.04.009

    Google Scholar 

  46. F. Tran, P. Blaha, Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Google Scholar 

  47. J.I. Pankove, Optical Processes in Semiconductors. (Dover, New York, 1971)

    Google Scholar 

  48. K.C. Park, D. Young Ma, K.H. Kim, Thin Solid Films (1997). https://doi.org/10.1016/S0040-6090(97)00215-0

    Google Scholar 

  49. Y. lgasaki, H. Saito, J. Appl. Phys. (1991). https://doi.org/10.1063/1.349258

    Google Scholar 

  50. M. Raposo, Q. Ferreira, P.A. Ribeiro, A. Méndez-Vilas, J. Díaz (eds.), Modern Research and Educational Topics in Microscopy (FORMATEX, Portugal, 2007), p. 548

    Google Scholar 

  51. L.C. Damonte, G.N. Darriba, M. Rentería, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.11.072

    Google Scholar 

  52. F. Marcillo, L. Villamagua, A. Stashans, Int. J. Mod. Phys. B (2017). https://doi.org/10.1142/S0217979217501119

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Consejo Nacional de Ciencia y Tecnología (The National Council of Science and Technology- CONACYT-Mexico) for providing the financial support with the Project No. 263043. Author S. K wish to thank CONACyT for the doctoral fellowship. S.K and S.C would like to thank V. K. Jayaraman and Jorge Sergio Narro-Rios for their invaluable inputs. We wish to thank, F. Alvarado-Cesar (XRD & SEM), M. Galvan-Arellano (UV–vis spectroscopic and Hall effect measurements), N. I. Gonzalez (Gold Masking), and M. G. Ramirez (AFM) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Velumani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S., K., Ríos-Ramírez, J.J., Chakaravarthy, S. et al. Electrical, optical, and topographical properties of RF magnetron sputtered aluminum-doped zinc oxide (AZO) thin films complemented by first-principles calculations. J Mater Sci: Mater Electron 29, 15383–15395 (2018). https://doi.org/10.1007/s10854-018-8920-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8920-8

Navigation