Electrical, optical, and topographical properties of RF magnetron sputtered aluminum-doped zinc oxide (AZO) thin films complemented by first-principles calculations

  • S. Karthick 
  • J. J. Ríos-Ramírez
  • S. Chakaravarthy
  • S. Velumani 


The fabrication of an efficient electron transport layer (ETL) with high conductivity and transparency is of significant interest. Aluminum doped zinc oxide (AZO) is an established ETL candidate due to its excellent conductivity and transparency, especially in the visible–near infrared (Vis–NIR) spectral range. Herein, we attempt to understand AZO properties by both experimental and computational approaches, as far as these methodologies permit. As part of our approach, we have deposited AZO thin films using radio frequency sputtering technique under two different sets of conditions, batch-I (150, 175, and 200 W; 0.2 mTorr; 20 min) and batch-II (70 W; 2 mTorr; 75 min). And, we have studied the structural, morphological, topographical, electrical, and optical properties of thus deposited films. The results are complemented by first-principles calculations based on the density functional theory (DFT) performed over a 2 × 2 × 2 and 3 × 2 × 2 supercell of wurtzite ZnO, to assess the effect of one aluminum atom substitution on the structural, electronic, and optical properties of the solid. We could discuss, thus, obtained computational results by comparing with the experimental measurements through a reliable construction of aluminum doping percentage models (3.12 and 2.08 at.%).



The authors are thankful to Consejo Nacional de Ciencia y Tecnología (The National Council of Science and Technology- CONACYT-Mexico) for providing the financial support with the Project No. 263043. Author S. K wish to thank CONACyT for the doctoral fellowship. S.K and S.C would like to thank V. K. Jayaraman and Jorge Sergio Narro-Rios for their invaluable inputs. We wish to thank, F. Alvarado-Cesar (XRD & SEM), M. Galvan-Arellano (UV–vis spectroscopic and Hall effect measurements), N. I. Gonzalez (Gold Masking), and M. G. Ramirez (AFM) for their technical support.


  1. 1.
    M. Schmidt, A. Falco, M. Loch, P. Lugli, G. Scarpa, AIP Adv. (2014).  https://doi.org/10.1063/1.4899044 Google Scholar
  2. 2.
    M. Souadaa, C. Louagea, J.Y. Doisya, L. Meuniera, A. Benderraga, B. Ouddaneb, S. Bellayera, N. Nunsc, M. Traisnela, U. Maschke, Ultrason. Sonochem. (2018).  https://doi.org/10.1016/j.ultsonch.2017.08.043 Google Scholar
  3. 3.
    C. ViolBarbosaa, J. Karela, J. Kissa, O.D. Gordanb, S.G. Altendorfc, Y. Utsumia, M.G. Samantc, Y.H. Wud, K.D. Tsueid, C. Felsera, S.S.P. Parkinc, Proc. Natl. Acad. Sci. USA (2016).  https://doi.org/10.1073/pnas.1611745113 Google Scholar
  4. 4.
    A. Karalis, J.D. Joannopoulos, Sci. Rep. (2017).  https://doi.org/10.1038/s41598-017-13540-8 Google Scholar
  5. 5.
    J. Ghosha, R. Ghosha, P.K. Giri, Sens. Actuators B (2018).  https://doi.org/10.1016/j.snb.2017.07.110 Google Scholar
  6. 6.
    B.T. Camic, F. Oytun, M.H. Aslan, H.J. Shin, H. Choi, F. Basarir, J Colloid Interface Sci. (2017).  https://doi.org/10.1016/j.jcis.2017.05.065 Google Scholar
  7. 7.
    S.Q. Hussain, C. Yen, S. Khan, G.D. Kwon, S. Kim, S. Ahn, A.H. Tuan Le, H. Park, S. Velumani, J. Yi, Mater. Sci. Semicond. Process. (2015).  https://doi.org/10.1016/j.mssp.2015.02.024 Google Scholar
  8. 8.
    S. Khan, S. Qamar Hussain, D. Hwang, S. Velumani, H. Lee, Mater. Sci. Semicond. Process. (2015).  https://doi.org/10.1016/j.mssp.2015.01.019 Google Scholar
  9. 9.
    L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today (2007).  https://doi.org/10.1016/S1369-7021(07)70078-0 Google Scholar
  10. 10.
    H. Zhu, Y. Feng, L. Zhang, B. Lai, T. He, D. Liu, Y. Wang, J. Yin, Y. Ma, Y. Huang, H. Jia, Y. Mai, Phys. Status Solidi A (2012).  https://doi.org/10.1002/pssa.201127746 Google Scholar
  11. 11.
    R.R. Biswal, S. Velumani, B.J. Babu, A. Maldonado, S.T. Guerrac, L. Castaneda, M.D.L.L. Olvera, Mater. Sci. Eng. B (2010).  https://doi.org/10.1016/j.mseb.2010.03.013 Google Scholar
  12. 12.
    V. Bhosle, J.T. Prater, F. Yang, D. Burk, S.R. Forrest, J. Narayan, J. Appl. Phys. (2007).  https://doi.org/10.1063/1.2750410 Google Scholar
  13. 13.
    C. Besleaga, L. Ion, V. Ghenescu, G. Soco, A. Radu, L. Arghir, C. Florica, S. Antohe, Thin Solid Films (2012).  https://doi.org/10.1016/j.tsf.2012.07.030 Google Scholar
  14. 14.
    B. Santoshkumar, A. Biswas, S. Kalyanaraman, R. Thangavel, G. Udayabhanu, G. Annadurai, S. Velumani, Superlattices Microstruct. (2017).  https://doi.org/10.1016/j.spmi.2017.03.039 Google Scholar
  15. 15.
    H. AitDads, S. Bouzit, L. Nkhaili, A. Elkissani, A. Outzourhit, Sol. Energy Mater. Sol. Cells (2016).  https://doi.org/10.1016/j.solmat.2015.09.063 Google Scholar
  16. 16.
    M.L. Grilli, A. Sytchkova, S. Boycheva, A. Piegari, Phys. Status Solidi A (2013).  https://doi.org/10.1002/pssa.201200547 Google Scholar
  17. 17.
    Y.B. Li, Y. Bando, D. Golberg, Appl. Phys. Lett. (2004).  https://doi.org/10.1063/1.1738174 Google Scholar
  18. 18.
    B. Yun Oh, M.C. Jeong, T.H. Moon, W. Lee, J.M. Myounga, J. Appl. Phys. (2006).  https://doi.org/10.1063/1.2206417 Google Scholar
  19. 19.
    P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T.B. Tasciuc, S.X. Dou, G. Ramanath, Nano Lett. (2011).  https://doi.org/10.1021/nl202439h Google Scholar
  20. 20.
    T.R. Ramireddy, V. Venugopal, J.B. Bellam, A. Maldonado, J. Vega-Pérez, S. Velumani, M.D.L.L. Olvera, Materials (2012).  https://doi.org/10.3390/ma5081404 Google Scholar
  21. 21.
    B.P. Zhang, K. Wakatsuki, N.T. Binh, N. Usami, Y. Segawa, Thin Solid Films (2004).  https://doi.org/10.1016/S0040-6090(03)01466-4 Google Scholar
  22. 22.
    A.N. Gruzintsev, V.T. Volkov, L.N. Matveeva, Russ. Microlectron. (2002).  https://doi.org/10.1023/A:1015415120927 Google Scholar
  23. 23.
    A.C. Gâlcă, M. Secu, A. Vlad, J.D. Pedarnig, Thin Solid Films (2010).  https://doi.org/10.1016/j.tsf.2009.12.041 Google Scholar
  24. 24.
    N. Srinatha, Y.S. No, V.B. Kamble, S. Chakravarty, N. Suriyamurthy, B. Angadi, A.M. Umarjif, W.K. Choib, RSC Adv. (2016).  https://doi.org/10.1039/c5ra22795j Google Scholar
  25. 25.
    T. Schuler, T. Krajewski, I. Grobelsek, M.A. Aegerter, Thin Solid Films (2006).  https://doi.org/10.1016/j.tsf.2005.07.246 Google Scholar
  26. 26.
    B.J. Babu, A. Maldonado, S. Velumani, R. Asomoza, Mater. Sci. Eng. B (2010).  https://doi.org/10.1016/j.mseb.2010.03.010 Google Scholar
  27. 27.
    P. Raghu, N. Srinatha, C.S. Naveen, H.M. Mahesh, B. Angadi, J. Alloys Compd. (2017).  https://doi.org/10.1016/j.jallcom.2016.09.290 Google Scholar
  28. 28.
    B. Yun Oh, M.C. Jeong, W. Lee, J.M. Myoung, J. Cryst. Growth (2005).  https://doi.org/10.1016/j.jcrysgro.2004.10.026 Google Scholar
  29. 29.
    Y. Wang, C. Wang, Z. Peng, Q. Wang, X. Fu, Surf. Rev. Lett. (2017).  https://doi.org/10.1142/S0218625X18500063 Google Scholar
  30. 30.
    J.V. Kumar, A. Maldonado, Y. Matsumato, M.L. Olvera, ICEEE (2014).  https://doi.org/10.1109/ICEEE.2014.6978324 Google Scholar
  31. 31.
    J.W. Kim, H.B. Kim, J. Korean Phys. Soc. (2011).  https://doi.org/10.3938/jkps.59.2349 Google Scholar
  32. 32.
    M. Bououdina, S. Azzaza, R. Ghomri, M.N. Shaikh, J.H. Dai, Y. Song, W. Song, W. Cai, M. Ghers, RSC Adv. (2017).  https://doi.org/10.1039/c7ra01015j Google Scholar
  33. 33.
    P.K. Jain, M. Salim, Mater. Res. Express (2017).  https://doi.org/10.1088/2053-1591/aa6f99 Google Scholar
  34. 34.
    A. Abbassi, H. Ez-Zahraouy, A. Benyoussef, Opt. Quant. Electron. (2015).  https://doi.org/10.1007/s11082-014-0052-7 Google Scholar
  35. 35.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter (2002).  https://doi.org/10.1088/0953-8984/14/11/301 Google Scholar
  36. 36.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996).  https://doi.org/10.1103/PhysRevLett.77.3865 Google Scholar
  37. 37.
    B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, J. Comp. Phys. (1997).  https://doi.org/10.1006/jcph.1996.5612 Google Scholar
  38. 38.
    L. Zhifang, C. Guangyu, G. Shibin, D. Lingling, Y. Rong, M. Yuan, G. Ted, L. Liwei, J. Semicond. (2013).  https://doi.org/10.1088/1674-4926/34/6/063004 Google Scholar
  39. 39.
    D. Vanderbilt, Phys. Rev. B (1990).  https://doi.org/10.1103/PhysRevB.41.7892 Google Scholar
  40. 40.
  41. 41.
    A.J. Read, R.J. Needs, Phys. Rev. B (1991) . https://doi.org/10.1103/PhysRevB.44.13071 Google Scholar
  42. 42.
    T. Blanton, International Centre for Diffraction Data, Newtown Square (2014)Google Scholar
  43. 43.
    J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho, J.M. Myoung, Solid State Electron. (2010).  https://doi.org/10.1016/j.sse.2010.07.002 Google Scholar
  44. 44.
    H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, D.B. Chrisey, Appl. Phys. Lett. (2000).  https://doi.org/10.1063/1.125740 Google Scholar
  45. 45.
    O. Szabó, S. Kováčová, V. Tvarožek, I. Novotný, P. Šutta, M. Netrvalová, D. Rossberg, P. Schaaf, Thin Solid Films (2015).  https://doi.org/10.1016/j.tsf.2015.04.009 Google Scholar
  46. 46.
    F. Tran, P. Blaha, Phys. Rev. Lett. (2009).  https://doi.org/10.1103/PhysRevLett.102.226401 Google Scholar
  47. 47.
    J.I. Pankove, Optical Processes in Semiconductors. (Dover, New York, 1971)Google Scholar
  48. 48.
    K.C. Park, D. Young Ma, K.H. Kim, Thin Solid Films (1997).  https://doi.org/10.1016/S0040-6090(97)00215-0 Google Scholar
  49. 49.
    Y. lgasaki, H. Saito, J. Appl. Phys. (1991).  https://doi.org/10.1063/1.349258 Google Scholar
  50. 50.
    M. Raposo, Q. Ferreira, P.A. Ribeiro, A. Méndez-Vilas, J. Díaz (eds.), Modern Research and Educational Topics in Microscopy (FORMATEX, Portugal, 2007), p. 548Google Scholar
  51. 51.
    L.C. Damonte, G.N. Darriba, M. Rentería, J. Alloys Compd. (2018).  https://doi.org/10.1016/j.jallcom.2017.11.072 Google Scholar
  52. 52.
    F. Marcillo, L. Villamagua, A. Stashans, Int. J. Mod. Phys. B (2017).  https://doi.org/10.1142/S0217979217501119 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Karthick 
    • 1
  • J. J. Ríos-Ramírez
    • 2
  • S. Chakaravarthy
    • 1
  • S. Velumani 
    • 1
    • 2
  1. 1.Programa de Nanociencias y NanotecnologíaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Ciudad de MéxicoMexico
  2. 2.Departamento de Ingeniería Eléctrica (SEES)Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Ciudad de MéxicoMexico

Personalised recommendations